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Chapter 1Introdution1.1 The ObjetiveThe objetive is to navigate a ourse for a Sokoban game. A robot will be required to e�etuatea solution to a given problem. The solution to the problem will be alulated o�ine, and therobot must then funtion as a means to translate the solution into the real world.A omplete model of the ourse is known in advane, and a plan for a solution is alulatedon a omputer separate from the robot, and transferred to the robot as a series of ommands.This doument desribes the implementation of a system to solve this problem.The real Sokoban ourse is a grid of blak tape on a white bakground, the points wheretwo tape lines meet, the intersetion, orresponds to a �eld in the model. The model does notontain any data about the distane between points, nor does it ontain data on irregularities inthe playing �eld et. The robot must therefor ompensate for these on its own.1.1.1 The CompetitionAll groups taking the AI00 ourse must partiipate in a ompetition, where the objetive is tosolve the real world puzzle in the shortest amount of time.1.2 This ReportThis report onsist of two major parts.Part One: The �rst part desribes the robot used to solve the puzzle. This part is mostly thereport that was delivered as a preliminary report, but modi�ed in aordane with reeivedfeedbak.Part two: The seond part onsist mainly of the o�ine path planning. Also there is a partdesribing the modi�ations made to the robot in response to problems revealed by runningthe atual solution on the ompetition ourse, rather than the test ourse.All relevant soure ode is plaed in a separate appendix setion.
3



Part IThe Sokoban Robot
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Chapter 1Desription of the Robot1.1 RequirementsFrom a ursory inspetion of the problem it is evident that the following omponents is needed:Sensors In order to navigate the ourse some kind of input from the physial world is required.Atuators In order for the robot to solve the problem it needs some way to a�et the world.Stable frame In order to use the sensors and atuators in a meaningful manner, knowledgeabout their position relative to the rest of the robot is needed. Also there must be somekind of guarantee that they will not move signi�antly from this known position. Thismeans that the frame/hassis must be a stable onstrut.A "brain" Some way to evaluate the sensor input, and ativate the atuators is needed.The design must be able to ahieve the following three goals:
• Navigating the �eld.
• Moving a "diamond"
• Plaing a "diamond"It is not neessary to lift a diamond, and it is not legal to turn while moving a diamond. It ishowever legal to pull the diamond bak if it is done in order to plae it aurately.1.2 Implementation hoiesThe robot is build from LEGO Mindstorm, whih means that a lot of fators are predetermined.The atuators will be the LEGO rotational motors. The "brain" will obviously be the LEGONXT blok. As this has three output and four inputs, the number of sensors and atuators islimited. Also physial dimensions of the bloks and weight must be taken into onsideration.1.2.1 NavigationThe playing �eld is marked in blak and white, and it an be assumed that a full model is knownto the program that plans the movements. Further we assume that we will not have to dealwith unknown obstales, suh as other vehiles. In this ase only sensors that detet the blakline that is to be followed is really neessary. It was determined that two light sensors plaedlose to eah other, and at a distane from the turning point would be su�ient to detet if therobot follows the line. Additionally the sensors will provide enough information to orret thediretion of the robot as needed. 5



AI00 - Sokoban Solver 1.2. Implementation hoiesLEGO Mindstorm ome with building instrutions to a number of designs. Most of these usethe same basi hassis. As this hassis is a very stable design, we hose to use this as the basisfor the frame.The design uses three motors as a integral part of the design. Two for driving and turning,and one for other purposes. We only need the two, but have kept the third as it adds stabilityto the hassis.

Figure 1.1: Chosen hassisFigure 1.1 is a CAD drawing showing the robot as it is urrently implemented. The boom infront pushes the �diamond� between �elds. The sensors behind the boom are used for followingthe blak lines, and deteting intersetions. The front most sensor is used to detet intersetionswhile pushing �diamonds�, in order to ensure that the �diamonds� are plaed exatly on theintersetion.The two wheels are used to both drive and steer the robot, with a single Bogey wheel forbalaning the tail. Eah wheel is driven by separate motors, allowing for a very sharp turningradius.1.2.2 Sensor PlaementThe two front sensors are plaed entrally on the robots front end, at a spei� distane from therobot's turning axis, as shown in �gure 1.2. The two front sensors are plaed as lose as possibleto eah other, while still being plaed on eah side of the blak line that the robot follows.The position of the sensors are important. If they get to far from the robot's turning axis,there is a danger that both sensors will get on the same side of the line before the diretion anbe orreted. This happens beause the turning speed of the sensors, if plaed to far from therobot's turning axis, gets to fast for the sensor sampling rate, and thus the robot annot reatin time. This results in the robot straying from the path, whih is an unreoverable error.If they get too lose to the robot's turning axis, the robot might already have turned asubstantial number of degrees, before the turn is deteted by the sensors. This results in a�zig-zag� movement of the robot, whih signi�antly slow-down as a onsequene.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 6



AI00 - Sokoban Solver 1.3. Modi�ations
d1

d2
Robot

Direction of movement

Error in direction

sensors
Line to folowFigure 1.2: Sensors plaement1.3 Modi�ationsThe �nal implementation of the robot, is the result of a iterative proess, in whih the robot wassubjeted to a series of tests, interspersed with redesigns.The physial design of the robot hanged as a result of both physial requirements of thegame, as well as modi�ations to the behaviours. For example it beame evident that the initialdesign had a turn irle that was too wide, and as a result the front end, where the sensors aremounted, was shortened. This gave a muh smaller turn irle.When plaing the sensors on the robot it was important to keep in mind, that if the sensorsame too lose to the axis around whih the robot turns, it would no longer be able to drive in astraight line. Therefor it beame a matter of iteratively hanging the plaement of the sensors,in order to maximise the line following ability, while at the same time keeping the turn irlesmall enough.Similarly it was deteted that the initial design had no way of stopping the robot when the�diamond� was exatly on the intersetion. This was solved by adding the front sensor. Thissensor is only used when pushing a �diamond�.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 7



Chapter 2Robot BehaviourThe behaviour of the robot an generally be separated into three parts, whih ombined ontrolsthe robot in its entirety. The three behaviours are basially:
• path following
• rotation
• deision makingThe behaviours are disussed in detail in the next setion.The behaviours are implemented as a mix of tasks and funtions, and omplex behaviours aregenerally made up as a ombination of more primitive behaviours, to ease the implementation.2.1 Behavioural Analysis and DesignTo design the robots software routines, an analysis of the needed behaviours were performed.The primary and very basi behaviour needed, is following the paths/lines on the Sokoban�eld. This means following a path from one �eld, to another �eld.The obvious behaviours needed are: Forward, Right turn, Left turn and Reverse. Fur-ther analysis of the robots behaviour and the playing �eld revealed the need for some additionalbehaviours: Forward with diamond and Turn 180. The behaviours are summarised anddesribed in table 2.1.All behaviours are based on the spei� sokoban board used in this projet. This meansthat behaviours are based around the blak lines on the board, and most importantly: theintersetions between the blak lines.No name desription1 Forward Follow a line until the next intersetion is reahed.2 Reverse Reverse along a line until the next intersetion is reahed.3 Turn Left Rotate left until the left line of the intersetion is reahed,and then go forward (1).4 Turn Right Rotate right until the right line of the intersetion isreahed, and then go forward (1).5 Forward with diamond Like Forward (1), exept that the robot must stop whenthe diamond is on the intersetion.6 Rotate 180 Like performing two Right turns (4) in a row, exept thatthe �rst turn must not be followed by a ForwardTable 2.1: Behaviours for the Sokoban robot8



AI00 - Sokoban Solver 2.2. Behavioural ImplementationThe robot uses the sensors to detet when the robot is plaed exatly on top of an intersetion.Only on intersetions will new behaviours be performed. If for example the robot is performingthe Forward behaviour, it will keep doing that, until it detets an intersetion.All behaviours will automatially take the robot from one intersetion and to the next inter-setion. When the robot is plaed on an intersetion, and starts the Turn left behaviour, it willrotate 90 degrees left, and the automatially proeed forward to the next intersetion.2.2 Behavioural ImplementationThe software for the robot is written in the Not eXatly C (NXC) programming language usingthe BrixCC IDE. The most important fat to remember when disussing the software designand implementation, is that NXC allows multi-tasking to take plae. This means that all thetask setions of the ode, are run in parallel.As stated, the omplete behavioural system of the robot, is omposed of several sub-systemsresponsible for a limited funtionality. The omplete systems onsists of several tasks all runningsimultaneously and ontinuously, and a number of funtions for performing limited funtionalityspei� to a ertain situation.2.2.1 TasksThe system utilises three task for ontrolling the robot's motion and urrent state. Additionallythe main task is responsible for the on�guration of the various sensors, and is run prior to thethree ontrolling task. The three ontrol tasks are started simultaneously and one started theyannot be interrupted. To allow for a task to be temporally stopped and later restarted, a doublewhile onstrut, as shown below, is utilised:
� �1 task SomeTask ( ) {while ( true ) { //run always3 while ( somevariable ) { // only run when somevar iab l e i s t rue// . . . some ode here5 }}7 }
� �By setting the inner variable true or false, the running an be disabled or enabled as needed.Motion ontrol tasks The two motion ontrol tasks are the most important tasks in thesystem, and are the basis upon whih all other motion is based. Eah task is responsible forontrolling the speed of one of the robots two motors. As long as the sensor, plaed on the sameside as the ontrolled motor, is observing a white surfae the motor is kept running. If the sensorobserves a blak surfae, indiating the sensor is now over a blak line, the ontrolled motorstops. The basi funtionality is illustrated in the following ode:
� �1 task MotionTaskRight ( ) {while ( true ) { //run always3 while ( right_motor ) { // only run when t ruei f ( right_sensor > RIGHT_SENSOR_THRESHOLD ) OnFwd ( RIGHT_MOTOR ) ;5 else Off ( RIGHT_MOTOR ) ;}7 }}
� �Due to the plaement of the sensors, relative to the turn-point of the robot, this keeps therobot aligned with a sensor on eah side of the blak line, when moving forwards. When anintersetion is reahed, both sensors will observe a blak surfae, and the robot will stop.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 9



AI00 - Sokoban Solver 2.2. Behavioural ImplementationNo name desription1 RunStraight Move the robot forward.2 RunRight Turn 90 degrees right.3 RunLeft Turn 90 degrees left.4 RunRightRight Rotate right 180 degrees.5 RunLeftLeft Rotate left 180 degrees.Table 2.2: Main behavioural funtions for the Sokoban robotState ontrol task The state ontrol task ontinuously evaluates the input from the threelight sensors on the robot. When the two sensors in front of the wheels both report blak, therobot has reahed an intersetion. When this happens a list of ommands is queried for thenext ommand to be performed, e.g. go forward, turn left, et. The priniple is shown in thepseudo-ode below:
� �task ControlTask ( ) {2 while ( true ) { //run alwaysi f ( both sensors show blak ) {4 md = getNxtCmd ( ) ;Swith ( md ) {6 ase FORWARD ://some ode here8 ase LEFT :. . .10 }}12 }}
� �The state ontrol task �rst ensures that the motion tasks are disabled (the motors are alreadystopped, sine both sensors are over a blak line), so that the motors will not start again, beforethe robot is ready to perform its next ommand. The swith ontrol struture then evaluates thenext ommand, and alls one or several funtions, to get the robot to do the queued ommand.Finally when the funtion report it is done, the state ontrol task enables the motion ontroltasks again.2.2.2 FuntionsSeveral funtions implement spei� behaviours needed in spei� situation. In general thefuntions are invoked by the state ontrol task, when the robot is navigating before runningforwards again. The main funtions are listed in table 2.2.RunStraightThe RunStraight funtion makes the robot drive forward a spei� distane. In ontrast tothe motion ontrol task, the sensor values are ignored, and the robot drive straight forward(synhronised motors) without regard for the blak lines. This is useful for moving the robotaway from an intersetion, so the sensors get bak on the white surfae, without triggering thestate ontrol task again.RunLeft and RunRightThe RunRight and RunLeft funtions turn the robot 90 degrees right or left respetively. Toturn the robot both motion ontrol tasks are disabled, and the RunStraight funtion is alled tomove the robot o� the intersetion manually. The right or left motor is then ativated manually,to turn the robot a �xed number of degrees (about 45 degrees). This is done to ensure that theBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 10



AI00 - Sokoban Solver 2.3. Sensor Adjustmentsensors are now all away from the blak lines. Finally the left or right motor is ativated, byenabling one or the other of the motion ontrol task, aording to the diretion the robot shouldturn. When the ative motion ontrol task senses a blak line again, e.g. that it has turned 90degrees, the other motion ontrol task is ativated, and the robot drives forward along the lineagain.RunLeftLeft and RunRightRightThe RunRightRight and RunLeftLeft funtions are, as the names apply, ontinuation of theRunRight and RunLeft funtions, just rotating the robot 180 degrees instead. Basially theyare idential to the 90 degrees version, exept that they repeat the turning-part of the funtiontwie, before driving forward again.2.3 Sensor AdjustmentThe sensors are used in a mode that gives a perentage value. A lower value means that thesensor reads less light, in this ase the blak line. Likewise a high value means that the sensorreads the white board. Under di�erent lighting onditions the preise threshold value between ablak and a white reading di�er somewhat. However the behaviours are made su�iently robustthat a exat value are not required. Experiments have shovn that a threshhold of 50% is almostalways good enough.
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Chapter 3Performane TestThe following setion ontains a desription of the various test senarios of the robot. These testsshould not be seen as the �nal evaluation of the robot, but rather as preliminary experiments ofthe morphology and physial design of the robot. We have performed a series of tests, where thepurpose of eah test is to reveal potentially weak design deisions, primarily with provide us withenough knowledge to be in a position to orret these potentially bad design hoies suessfully.Moreover, the tests should bring useful information regarding the orret adjustment of thedi�erent parameters; like optimal power values of the motors, sensitivity of the light sensors, et.The overall goal of the projet is that the robot should be able to play the Sokoban game.However, before onsidering strategies and algorithms to solve this task, we have taken a bottomup approah; meaning that we have implemented basi motion behaviours like the ability tofollow a line and performing turns when neessary. The test base for these experiments is shownin �gure 3.1. The physial model of the �eld for playing Sokoban is a white square, with anarea of approximately 1.5 m2. The valid pushing paths are indiated by blak tape, forming agrid-like pattern as in �gure 3.1.Figure 3.2 shows a magni�ed outline of the grid from 3.1. The blak dot represents a an,whih is the objet the robot must push around the grid path. In the real Sokoban game theobjets are diamonds - here ans resemble diamonds.3.1 Test 1In this test, the robot traks a path formed by two squares, where the perimeter of one squaretouhes, without interseting, the perimeter of the other square thereby forming the numbereight (in digital). By navigating this partiular pattern, the robot is fored to perform both left-and right turns. The test is performed ten times and with di�erent power values of the motors.The result of the test is shown in table 3.1Test Speed Rounds Completed Error % Average lap time [s℄ Remark1 60 10 10 0 32 None1 70 10 10 0 29 None1 80 10 10 0 27.9 None1 90 10 1.5 15 30.6 Fails in turnTable 3.1: Result of test 1.
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AI00 - Sokoban Solver 3.2. Test 2

124 cm

124 cmFigure 3.1: The grid layout representing the environment that the robot operates in.3.2 Test 2In this test, the robot traks a path between two points. A strip of blak tape onnets thepoints. The distane between the points is approximately 45 m. The robot starts from onepoint, with the line properly plaed between the two front sensors, thereby faing diretly towardsthe opposite point. When the robot reahes the opposite point it performs a 180-degree turnand ontinues toward the staring point. This yle is repeated ten times with di�erent powervalues of the motors. The result of the test is shown in table 3.2Test Speed Rounds Completed Error % Average lap time [s℄ Remark2 60 10 10 0 14.6 None2 70 10 5 50 13.4 Fails after turn2 80 10 1.5 15 16.6 Fails in turnTable 3.2: Result of test 2.
Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 13



AI00 - Sokoban Solver 3.3. Conlusion

22 cm

22 cm

5.3 cm

Figure 3.2: Close view of the �eld in whih the robot operates.3.3 ConlusionBy observing the performed tests, and spei�ally their point of failure, several additions to,and �ne-tuning of, the robot's behaviours were done. The most important is the introdution ofvariable power setting for the motors, based on the previous ommand. This for example enablesthe robot to set the Forward speed setting, to a lower value after performing a 180 degrees turn,where it potentially has a problem �nding the blak line again.Table 3.3 shows the optimal speed setting derived from the performane tests, for severalbehaviours. With the adjusted speed settings, the robot is able to perform ten runs in everytest, with 100% suess rate.Situation Speed DesriptionForward 80% When running diretly forward between intersetions.Turn left / right 70& This is the maximum reliable speed when turning 90 de-grees.Rotate 180 degrees 60% Maximum reliable speed when turning 180 degrees.Forward after 180 rotation 60% This is the maximum speed, where the robot is able todetermine a line after 180 rotation, 100% reliable.Table 3.3: Variable speed settings.
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AI00 - Sokoban Solver 3.3. Conlusion

Figure 3.3: Field layout for test 1.
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AI00 - Sokoban Solver 3.3. Conlusion

Figure 3.4: Field layout for test 2.
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Chapter 1A* In General1.1 Path�ndingThis setion desribes the A* algorithm in general and is therefore not onentrated at path�nd-ing in Sokoban in partiular, but rather on path�nding in a broader sense. Later the modi�ationsused to adapt A* to solve Sokoban are desribed, in the design setion of this report.The planning of the path that the robot must follow is alulated o�ine, meaning thatthe path is found in advane and not determined dynamially as the robot moves along. Thepath�nder will de�ne a path through a virtual world to solve a given set of onstraints. Oftenthe onstraints is to �nd the shortest path from the urrent position of the agent to a spei�edtarget position. Path�nding systems typially use pre-proeessed representations of the virtualworld as their searh spae. The ommon senario when path�nding in omputer games, is thatthe representation of the virtual world is made in form of a map.1.2 Approahes to Path�ndingThere are many di�erent approahes to path�nding, but overall path�nding an be divided intoategories; undireted and direted. These approahes are brie�y desribed in the followingsetions.1.2.1 UndiretedThis approah is analogous to a rat in a maze running around blindly trying to �nd a way out.The rat spends no time planning a way out and puts all its energy into moving around. Thusthe rat might never �nd a way out and uses most of the time going down dead ends. Thus, adesign based ompletely on this onept would not be useful in reating believable behaviour foran AI agent.There are two main undireted approahes that improve e�ieny. These are Breadth-�rstsearh and Depth-�rst respetively. Breadth-�rst searh treats the virtual world as a largeonneted graph of nodes. It expands all nodes that are onneted to the urrent node and thenin turn expands all the nodes onneted to these new nodes. Therefore if there is a path, breadth-�rst will �nd it. In addition if there are several paths it will return the shallowest solution �rst.The depth-�rst approah is opposite of breadth-�rst searhing in that it looks at all the hildrenof eah node before it looks at the rest, thus reating a linear path to the goal. Only when thesearh hits a dead end does it go bak and expand nodes at shallower levels. For problems thathave many solutions the depth-�rst method is usually better as it has a good hane of �ndinga solution after exploring only a small portion of the searh spae.
18



AI00 - Sokoban Solver 1.3. A* Path�nding Algorithm1.2.2 DiretedDireted approahes to path�nding all have one thing in ommon, that they do not go blindlythrough the maze. This means that using a direted strategy ensures a method of assessing theprogress from all adjaent nodes before piking one of them. This is referred to as assessingthe ost of getting to the adjaent node. Typially the ost in game maps is measured by thedistane between the nodes. Most of the algorithms used will �nd a solution to the problem butnot always the most e�ient solution - that is the shortest path. The main strategies for diretedpath�nding algorithms are:
• Uniform ost searh g(n) modi�es the searh to always hoose the lowest ost nextnode. This minimises the ost of the path so far, it is optimale and omplete, but an bevery ine�ient.
• Heuristi searh h(n) estimates the ost from the next node to the goal. This uts thesearh ost onsiderably but it is neither optimal nor omplete.The two most ommonly used algorithms for direted path�nding in omputer games; Dijk-stra's algorithm and the A* algorithm use one or more of these strategies. Dijkstra's algorithmuses the uniform ost strategy to �nd the optimal path while the A* algorithm ombines bothstrategies thereby minimizing the total path ost. Thus A* returns an optimal path and isgenerally muh more e�ient than Dijkstra's algorithm making it the bakbone behind mostpath�nding designs in omputer games. Therefore we have hosen A* as the primary tool in theimplementation for solving the Sokoban problem.1.3 A* Path�nding AlgorithmA* is a direted algorithm, meaning that is does not blindly searh for a path - like a rat in a maze.Instead it assesses the best diretion to explore, sometimes baktraking to try alternatives. Thismeans that A* will not only �nd a path between two points, if a path exists, but it will �nd theshortest path if one exists and do so relatively fast.To use A* in omputer games, the game map has to be pre-proessed before the A*-algorithman work. This involves breaking the map into di�erent points or loations, whih are allednodes. These nodes are used to reord the progress of the searh. In addition of holding the maploation eah node has three other attributes. These are �tness, goal, and heuristi ommonlyknown as f, g, and h respetively. Di�erent values an be assigned to paths between the nodes.Typially these values would represent the distanes between the nodes. The attributes g, h,and f are de�ned as follows:
• g is the ost of getting from the start node to the urrent node i.e. the sum of all the valuesin the path between the start and the urrent node.
• h stands for heuristi whih is an estimated ost from the urrent node to the goal node -usually the straight line distane from this node to the goal.
• f is the sum of g and h and is the best estimate of the ost of the path going through theurrent node. In essene the lower value of f the more e�ient the path.The purpose of f, g, and h is to quantify how promising a path is up to the present node.Additionally A* maintains two lists, an Open and a Closed list. The Open list ontains all thenodes in the map that have not been fully explored yet, whereas the Closed list onsists of allthe nodes that have been fully explored. A node is onsidered fully explored when the algorithmhas looked at every node linked to it. Nodes therefore simply mark the state and progress of thesearh. Pseudoode for the general A* algorithm is given in algorithm 1.The pseudoode outlined in algorithm 1 is the path�nding method used in most omputergames. Its simply tries to �nd af path from a given starting point to a spei�ed target. Due toBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 19



AI00 - Sokoban Solver 1.3. A* Path�nding AlgorithmAlgorithm 1: A* path�nding - normal versionPre-onditions:1 Both Open and Closed lists are empty.2 Variables B and P are nodes.3 Variables f , g, and h represents �tness, goal, and heuristi respetively.4 Let P = starting point5 Assign f , g, and h values to P .6 Add P to the Open list. At this point P is the only node in the Open list.7 while Open list is not empty do8 Let B = the best node from the Open list (i.e. the node that has the lowest f-value).9 if B is the goal node then10 Quit - a path has been found.11 end12 else13 Move the urrent node to the losed list and onsider all of its neighbors.14 for Eah neighbor do15 if This neighbor is in the losed list and the urrent g value is lower then16 Update the neighbor with the new, lower, g value.17 Change the neighbor's parent to the urrent node.18 end19 if This neighbor is in the Open list and the urrent g value is lower then20 Update the neighbor with the new, lower, g value.21 Change the neighbor's parent to the urrent node.22 end23 else24 Add the neighbor to the open list and set its g value.25 end26 end27 end28 end29the rules of Sokoban the general implementation of A* is not su�ient to solve the path�ndingproblem. There are various reasons for this. One of them is is desribed in the following.The problem of solving the Sokoban puzzle an be broken down in two subproblems. The �rstsubproblem is �nding the best path from the urrent position of the man to a given diamond.The seond subproblem is �nding the best path that the man, while pushing the diamond, mustfollow to plae the diamond onto a goal area.At �rst the two problems seems to be similar, but due to the rules of Sokoban they are not.The di�erene is that the man, while not pushing a diamond, is allowed to move up, down,left, and right under the assumption that he is not moving through any obstales by doing so.At the point when the man has reahed a diamond, his maneuverability beomes more limited,beause the man is only allowed to push the diamond. To overome these problems we havemade di�erent modi�ations to the general A* algorithm. These modi�ations are desribed insetion 2.1.
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Chapter 2Design and ImplementationStrategiesWhen deiding on an implementation strategy, several fators in the design of the game wasonsidered. First of all, there is really two elements in the game, that needs to be ontrolled.First there is the robot, and seondly the diamonds.The diamonds are of ourse the whole basis for evaluating the puzzle, sine the �nal goal is tomove the diamonds from their starting positions, and to the goal �elds. But on the other hand,it is the movements of the robot that is important in this projet. Both in terms of that it is therobot we ontrol, and also onsidering the fat that the robot should move in an optimal way.After some deliberation and several design and test implementations, a general algorithm forsolving the puzzle was agreed upon. The design separates the solving of the puzzle into two mainareas:1. �nding the optimal route the diamonds should be moved2. �nding the optimal route the robot must follow, to ensure the �rst requirement.The two requirements are o-dependant, sine the optimal route for a diamond is of oursedependant on where the robot is positioned, and where the robot an move to. And the therobot's route is dependant on the diamonds positions, sine this ditates where the robot anmove.2.1 Design: Moving the DiamondsThe general strategy for �nding a optimal route for the diamonds involves using a tree datastruture for storing di�erent states of the map, inluding the diamonds and the robot's position.For eah node in the tree a omplete �situation� is stored, and all possible next states are found.These are stored as hildren of the urrent node, and then proessed later. Eah node in thetree is visited in a searh, until a solution is found. In addition to the tree, a list of situationsalready visited/investigated is kept, so that traversing idential sub-trees is avoided.A �situation� is the data stored in a node. This inludes the positions of all the diamonds,the robot, the ost of the node and the parent of the node. When a node is proessed a Sokobanpuzzle is populated with the information from the node. What this pratially means, is thateah node ontains a omplete Sokoban map with diamonds, goals, walls, the robot et. This isused when �nding new nodes to add as hildren. Looking at the map for the urrent node beingproessed, all possible derivatives for the map is found. In theory this means four new nodesfor eah diamond, sine eah diamond an be moved in four diretions, but pratially thereare fewer nodes sine some of the diamonds moves will be bloked by walls or other diamonds.Additionally the robot needs to have a lear path to the position behind the diamond, so that21



AI00 - Sokoban Solver 2.1. Design: Moving the Diamondsthe diamond an be pushed. For eah of the new valid moves a new node is reated and thediamond is moved to that new position. This means that a parent node has a number of hildrennodes, and eah of these nodes have almost idential maps, exept that in eah map one of thediamonds are moved to one of its possible new positions, relative to the map in the parent node.Additionally the ost and the position of the robot is also updated to re�et the diamonds newpositions.2.1.1 Sokoban Solver: MainThe strategy for traversing the tree and adding new hildren is shown as pseudo-ode in algorithm2 Lines one to three is the preondition, and on line four the main onstrut of the solver isAlgorithm 2: Main setion of the Sokoban Solver lassSET initialnode.map to initialmap1 SET initialnode.parrent = null2 ADD initialnode to opennodes3 while opennodes not empty do4 SET urrentnode to �rst node in opennodes5 REMOVE �rst node from opennodes6 if urrentnode.map is the_solution then7 DO return the_solution8 end9 for eah diamond in urrentnode.map do10 SET newValidPositions to CALL �ndNewValidPositionsForTheDiamond(diamond)11 for eah newValidPosition in newValidPositions do12 SET tempmap = urrentnode.map13 CALL moveDiamond(tempmap, newValidPosition)14 SET tempnode.map = tempmap15 SET tempnode.parent = urrentnode16 ADD tempnode to opennodes17 end18 end19 end20started. This while runs until either a solution is found, whih is heked on line seven, or thereis no more open nodes. If no solution if found, and there is no more open nodes, the puzzle hasno solution that an be found by this algorithm.Apart from the while loop the solver utilises two extra funtions here. On line 14 moveDiamond()is used to update a map with the new position of the diamond. On line 11 a all to thefindNewValidPositions() is important for the solver, sine this all is responsible for detetingnew positions the diamond an be moved to. This is shown in more detail in subsetion 2.1.2In the pseudo ode shown in algorithm 2 some important parts are omitted for inreasedreadability. The two most important parts are:1. eah node has a ost assoiated, and the open list is sorted aordingly2. a list of nodes visited is stored in a losed list, and used to eliminate revisits of identialsub trees.The ost of eah node is alulated as with a lassi A* algorithm. This means the ost re�etsthe distane travelled from the starting position, and a heuristi funtion alulates an additionalost. The nodes are then sorted aordingly to the ost, so that the heapest node is at the �rstposition in the open list.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 22



AI00 - Sokoban Solver 2.1. Design: Moving the DiamondsThe seond omission is the losed list. When ever a new node is reated it's added to a losedass well as the open list. Before a node is added to the open list, it is heked if there is anidential node in the losed list. If that is the ase, it is already in the open list, and there is noneed to add the node again.2.1.2 Sokoban Solver: Finding New PositionsWhen �nding new valid positions for a diamond, the pseudo ode in �gure 3 is used. TheAlgorithm 3: The �ndNewValidPositions pseudo odefor urrentpostion.x - 1 to urrentposition.x + 1 do1 for urrentpostion.y - 1 to urrentposition.y + 1 do2 if position not equals urrentposition AND position not eqauls diagonal move then3 if position.type equals type.GROUND then4 robotPath = CALL getRobotPath(oppositeposition)5 if robotPath not equals null then6 ADD position AND robotPath to newnode7 end8 end9 end10 end11 end12 return listOfNewNodes13findValidPosition() method is alled with the position of a diamond as argument. Then allpositions neighbouring that position are investigated for validity. The ondition on line threeeliminates the starting position, whih the diamond are moving from, as well as the illegaldiagonal positions, whih are by default not valid positions in a Sokoban puzzle.The terrain of the position is then evaluate on line 4. The terrain must be valid for a diamond,whih means not a wall and not another diamond, or just basially of type ground. The robotand the goals are all seen as type ground, sine the diamond an indeed move to a �eld whereone of those two are plaed. The next hek involves the robots position and its path. On line�ve it is heked if there is a path from the robot's urrent position, and to the position where itmust go to push the diamond. It is important to reognise that it's not the path from the robotsstart position and to the diamond, or to the target �eld, but instead to the �eld that makesit possible to push the diamond. If the path is null the robot annot move to the required�pushing position�, and this of ourse invalidates the move of the diamond to the investigatedposition. This is heked on line six. If the robot's move is valid, the position is reported validto the alling funtion and the path of the robots is also returned.The reason for the path of the robot to be returned is that the path should be stored in thenew node reated for this update of the tree. Later, when a solution is found, it is possible totraverse up the tree, hild to parent, and extrat the path the robot has driven. This path isthe exat path the physial robot must be instruted to take, to solve the omplete puzzle fromstart to end.2.1.3 Sokoban Solver: The Closed ListIn a standard A* implementation the losed list is used to ensure that the path �nding algorithmdoes not visit the same �elds over and over again. That spei� situation is not omparable tothe Sokoban solver, whih does not enfore a demand that a spei� position an only evaluatedone. Instead the Sokoban solver enfores that idential situations, where the exat position ofthe diamonds and the robot, is only investigated for possible derivative situations one.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 23



AI00 - Sokoban Solver 2.1. Design: Moving the DiamondsWhenever a node is investigated for possible sub-nodes / hildren, all possible valid positionsfor the diamonds in the map are found. This an be used as an identi�er for this partiularsituation. Say, if the robot after several moves, has ompletely swithed the positions of twoof the diamonds, and is still only apable of pushing the diamonds to the same positions asin the start situation. Then, the start and end situations are idential, and there is no reasonto investigate the end situation for further derivatives. Instead, the path �nder should returnone situation up the tree, to the urrent situations parent node, and investigate that node foradditional derivative situations.2.1.4 Sokoban Solver: Cost FuntionsThe ost funtions are used when alulating whih ost a ertain situation should have, andthere by diret the searh algorithm to hopefully take an appropriate route down the tree.Two osts are used in our A* implementation. First the general ost of moving a diamondfrom �eld to �eld. This ost is always the SokobanSolver lass, sine moving a diamond fromone �eld to another, always amount to the same work. There is only one type of terrain, if theinvalid �elds like diamonds and walls are disregarded.The heuristi ost funtion in the solver is used to ensure that the diamonds in general movetowards the goals. In this implementation this amounts to a funtion alulating the distanefrom eah diamond and to the losest goal for that diamond. This ensures that the diamondsin general are moved towards the �elds, and not away. This heuristi is enough to solve theSokoban puzzle if only onsidering the diamonds.An additional point of interest in Sokoban, and in this problem in partiular, is the movementof the robot. To inrease the e�etiveness of the robot, an additional heuristi ost is added to anode, whih alulates the distane between the robot and the nearest diamond. This is used tomake the robot �prefer� pushing one diamond as long as possible, rather than hanging bak andforth between the diamonds that brings the whole puzzle loser to the solution. If this heuristiis not used, the robot will always push the diamond that is nearest to the �nal solution, possiblymaking robot move a diamond one �eld, then go to another diamond and move that diamondone �eld, and �nally bak to the �rst diamond. The most optimal is of ourse to move the �rstdiamond two pushes, and then move to seond diamond.
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Chapter 3Implementation of Sokoban SolverThe main part of the solver implementation is loated in the SokobanSolver lass, with someutility lasses providing additional funtionality. One exeption is the SokobanMapReader lasswhih both provides funtions for reading a puzzle map from a �le, and keeping it updated, butall ontains the ritial ode for �nding paths for the robot.3.1 The SokobanSolver lassThe design of the Sokoban solver is disussed in setion 2, and gives a general overview ofthe funtionality of the solver. In the next setions only tehnially and futionally importantsetions of the implementation are desribed. The omplete ode for the SokobanSolver lass arefound in the appendix.3.1.1 The Open ListThe A* algorithm used when solving the puzzle, ditates the use of a list for storing all theposition, or in our ase: maps, that needs to be investigated. The list should be sorted by ost,so that the heapest position or node is at the �rst position.In this implementation, where the open list ontains nodes in our tree, it's the total ost ofthat node, that ditates its position in the list. The ost of a node is alulate with the ostfuntions disussed in subsetion 2.1.4. Eah node in the tree is an objet of the type Node, andthe lass Node implements a ompare method (implements the omparable interfae). The openlist is implemented as a PriorityQueue, whih is a build-in Java queue, with automati sorting.This ensures that the heapest node is always at the head of the queue.3.1.2 The Closed ListIn addition to the open list, whih is part of the A* design, our implementation utilises a losedlist, whih is desribed in setion 2.1.3.The losed list is implemented as a double hash map, where the other hash map ontainsthe diamonds positions, while the inner ontains the valid positions for the diamonds at thaton�guration.To ensure orret hashing and reognition of situations where diamonds have exhangedplae, all positions are plaed in a sorted list. This list makes sure that the positions it ontainare sorted in a spei� way, so that if two diamonds have exhange positions, this is orretlypereived as an idential map, as when the diamonds were at their original positions.When a hildren is added to a node exatly one diamond has moved. This new list of positionsis added to the outer hash map, if it is not already added. For the new map in the hild node,all valid positions for the diamonds are then found, and added to a sorted list, in the same wayas with the diamonds. 25



AI00 - Sokoban Solver 3.2. The SokobanMapReader lassNow it is heked to see if this sorted list of valid positions, are already held in the inner hashmap. If that is the ase, a exatly similar situation has already been found by an earlier searh,and there is no reason to reate new hildren in the tree for these positions. The path �nder anlose this sub-tree, and go bak to the parent node, and try another hild. If the list is not foundin the inner hash map, it is added and new sub nodes are reated for eah of the valid positions.3.2 The SokobanMapReader lassThe SokobanMapReader lass implements a parser using a bu�ered reader and the Sanner lassto read and parse a Sokoban map in the format given in this ourse. It outputs a Sokoban-MapReader objet whih the SokobanSolver lass an use for solving the puzzle.In addition it ontains the robot path �nding implementation, used when querying the robotif there is a path from the urrent position and to a given position.3.3 The SokobanSortedList lassThis lass is important for the funtionality of the losed list implementation in the SokobanSolverlass. It is an extension to the normal ArrayList lass, overriding the standard add()method witha ustomised version. In the SokobanSortedList lass the add method both adds the argumentgiven to the list, but it also proeeds to sort that list, thus ensuring a spei� order of its elements.In partiular that the �smallest� positions are found �rst in the list, with inreasing positionsfollowing.
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Chapter 4Robot Modi�ations4.1 Testing on The Final CourseFor the initial onstrution and testing of the robot, a generi test ourse was used. In orderto adapt the robot for the ourse on whih the ompetition was held, a number of tests wasperformed. The �nal ourse, whih was used for the ompetition, onsited of two thin melaminewood plates. The lines that made up the ourse was made of the same type tape as on the testourse.The aim was to test the same type of movements that were tested in hapter 3 on page 12.Sine the ompetition ourse was more omplex, than the test ourse, some of the tests di�eredsomewhat, but the goal was the same. As desribed in 4.2 page 27 some modi�ations were madeto the robot. After these were made, the robot performed the same as on the test ourse, withregard to auray and stability.4.1.1 Observed Problems Prior to Modi�ationsAs the �nal ourse onsisted of two separate plates there was a intersetion between the plates,and this aused several problems as it was not ompletely level. When rossing the intersetion,the tin an (representing the diamond from the game) would often get aught in the tape edgeat the intersetion, whih made the an fall over.The tape marking the ourse would also rise up in a bump ausing light to be re�eted ina manner su�iently di�erent from the average ondition, that it would ause wrong sensorreadings. In several ases the robot would suddenly leave the ourse, for no apparent reason.4.1.2 Method of Problem SolvingIt was often not possible to determine why an error happened, as it was often di�ult to rereatethe events that led to the error. A number of tests with minor modi�ations to the robot weretherefor neessary, amounting to a proess of trial and error.The objet was to make the robot behaviours work at least as well on the ompetition ourseas on the test ourse. Also, as the robot had to partiipate in a timed ompetition, it wasimportant that the robot was optimised to run at the highest possible speed under the givenonditions.4.2 Strutural Modi�ations to the Robot.4.2.1 Stabilising the RigIn early tests the robot would �bob� the front end up and down when stopping after drivingfast forward. One solution was to make the robot drive slower, but that would lessen the27



AI00 - Sokoban Solver 4.3. Modi�ations to Movement patternshanes of winning the ompetition. A better solution was to mehanially stop the bobbingfrom happening, whih ahieved by plaing a number of support points immediately in front ofthe sensors. A positive side e�et of this was that tin an stopped hanging in the tape at theintersetion of the two plates.4.2.2 Enlosing the SensorsInitial tests were made in a room with relatively dark lighting onditions. When testing underother lighting onditions, it was made lear that some alibration of the sensor thresholds wereneessary. It was not possible to �nd thresholds that was valid under all lighting onditions.Rather than make adaptive sensor adjustment a hoie was made to ontrol the onditions underwhih the sensors operated.This was ahieved by enlosing the sensors in a shroud, that bloks exterior light soures onthree sides. On the fourth side an additional light soure (LED biyle front lamp) was plaed.This gave stable light onditions, thus alleviating the need to hange sensor settings. Also, thisremoved the problem of re�etions from the tape at the intersetion.4.3 Modi�ations to Movement patternsModi�ations were required in order to make some of the movements, that were possible on thetest ourse, possible on the ompetition ourse. On the test ourse the lines were whole, that isthere were no gaps. On the ompetition ourse the lines were broken to simulate a wall in thesokoban game. Unfortunately the lines were in many ases so short that the sensors on the robot�missed� them when making a 180 degrees turn. This was resolved in two parts. First some ofthe shortest lines were made longer on the ourse. Seond the behaviour of the 180 degree turnwas modi�ed. The modi�ations were made not to the method used for making the turn, butrather to the onstants used in the methods. This was very muh a ase of trial and error, beforethe optimal values were found.The other speed settings, forward, reverse and turn, were also optimised by trial and error.The aim was to get the robot to move as fast as possible and still run the ourse orretly.4.4 Test of The Path�nder SolutionThe solution returned by the path �nder is not the same format as the instrutions the robotneeds in order to move orretly. Additional instrutions are required in order to plae the anset. The solution from the path �nder, was onverted to movement instrutions via a purposewritten java program that pads the solution with the required extra instrutions. This was theninserted manually into the NXC ode, before ompilation.The alulated solution was tested simply by letting the robot run the ourse 6 - 7 times,and there were no errors. Simultaneously the robot was stress tested, by harassing the sensoronditions, e.g. by �ashing lights or shaking the ourse. This revealed several of the errorsthat were addressed in the previous setion. After the modi�ations were made, an additional 3�awless passes were made, despite ontinued harassment of the sensor onditions.
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Chapter 5Improvements of the Path�nder5.1 Path-�nding ImprovementsThis setion disusses possible improvements to the path �nding implementation used to solvethe Sokoban puzzle. We have not implemented any of these strategies, but if the implementationshould be improved or extended further some of the following onsiderations might be worthimplementing.5.2 Review Of Existing Sokoban implementationsThe most notably projet about Sokoban and general path �nding algorithms that we have beenable to �nd, is the Rolling Stone program and the aompanying papers desribing the evolutionof the program. The projet started as an extension of a Ph.D. projet in path �nding and motionplanning in omputer games, and later turned into researh projet running over a period of 3years. The authors of Rolling Stone desribes progress of the program as: "The developmente�ort equates to a full-time Ph.D. student, a part-time professor, one summer student, andvaluable feedbak from many people."In the following subsetions a number of strategies used in the Rolling Stone program aredesribed. In the heading of eah subsetion the revision number of the program and the numberof Sokanban problems the revision was able to solve is given. The goal of the Rolling Stoneprogram was to solve as many problems as possible in a test suite of 90 Sokoban puzzles.5.2.1 Minimum Mathing Lower Bound (R0, 0 solved)A* with a simple lower bound has no hope of �nding a solution to any of the problems in the testsuite. An obvious lower bound is the distane of eah diamond to its losest goal, a Manhattandistane for Sokoban. However, the gap between the lower bound value and the atual solutionlength for any non-trivial Sokoban problem so large that the number of A* iterations, and thustheir respetive tree sizes, make solving these problems e�etively impossible. By adding a lowerbound to their implementation they were still not able to solve any of problems in the test suite.To obtain a better admissible estimate for the distane of a diamond to a goal, a minimum-ost algorithm is used. The mathing assigns eah diamond to a goal and returns the total(minimum) distane of all diamonds to their goals. The minimum ost argumentation algorithmis O(N3), where N is the number of diamonds. During the searh the lower bound only needsto be updated, whih requires �nding negative-ost yles, and is therefore less expensive toompute. With the minimum mathing lower bound strategy the program was still not able tosolve any of the maps in the test suite.
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AI00 - Sokoban Solver 5.2. Review Of Existing Sokoban implementations5.2.2 Transposition Table (R1, 5 solved)Even though the searh spaes in Sokoban are generally graphs, most searh algorithms treatthem as trees. If a state an have several predeessors, this an lead to dupliate work. the searhould revisit nodes and even entire sub-trees several times. These "transpositions" or yles aredeteted using a transposition table in whih useful information about previously visited nodesis stored. Before expanding a node, the transposition table is onsulted, and if valid informationis found, it is used to potentially urtail the searh. Adding transposition tables allowed theirprogram to solve 5 problems in the test suite.5.2.3 Move Ordering (R2, 4 solved)Instead of visiting suessors of a position in an arbitrary order, one an try to look at "good"suessors �rst. Move (or suessor) ordering is not used in the best-�rst searhes; the algorithmitself provides for a global ordering of the alternatives. In depth-�rst and breadth-�rst searhes,move ordering an lead to e�ieny gains beause goals are found earlier (left in the tree) ratherthan later (right in the tree). For A*, ordering moves at interior nodes makes no di�erene to thesearh, exept for the �nal iteration. Sine the �nal iteration is aborted one a solution is found,�nding a solution early in this iteration an signi�antly improve the performane. After addingmove ordering to their program, they were only able to solve 4 of the test problems. Aordingto their doumentation, they ategorise this as bad luk and explain that move ordering showsup as a valuable ontribution after other features are added to the program.5.2.4 Deadlok Table (R3, 5 solved)In Sokoban it is possible to bring the puzzle in a deadlok state - that is a stat in whih thepuzzle beomes unsolvable. For instane pushing a diamond into a orner �eld that is not a goalarea, makes every onseutive move irrelevant, beause it is impossible for the man to bring thediamond bak into the game without pulling it, whih is an illegal operation in Sokoban. Theimplementation of Rolling Stone uses so alled deadlok tables, where an o�-line searh is usedto enumerate all possible diamond/wall plaements in a 4x5 region to determine if a deadlok ispresent. These results are stored in deadlok tables. During the A* searh, the table is queriedto see if the urrent move leads to a loal deadlok.In the A* searh, before making a move, the program queries the deadlok table to see if themove would result in a known deadlok. If so, the move is not onsidered further. Aording tothe designers of Rolling Stone, the branhing fator is redued by 20% by using deadlok tables.With deadlok tables the program where able to solve 5 of the test problems.5.2.5 Tunnel Maros (R4, 6 solved)The searh algorithms disussed so far treat all moves equally. After making a move, all legalmoves are onsidered as suessors. These algorithms are therefore treating all moves as if theywere unrelated. The method of maro moves is an attempt to group related atomi ations intohigher level omposite ations: maros.A tunnel is the part of a maze where the manoeuvrability of the man is restrited to a widthof one. Sine there an be at most one diamond in a tunnel without reating an immediatedeadlok, the remaining tunnel moves an be ompleted without loss of generality of optimality.If a tunnel is omposed of artiulation squares, the tunnel is alled a one-way tunnel. Wheneverthe move generator reates a move into a one-way tunnel, the move is substituted with the maropushing the diamond all the way through the tunnel. This eliminates all the inter-leavings withother legal moves.Tunnel maros result in one additional problem being solved, bringing the ount at a total of6 solved problems from the test suite.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 30



AI00 - Sokoban Solver 5.2. Review Of Existing Sokoban implementations5.2.6 Goal Maros (R5, 17 solved)Many of the Sokoban problems have all the goal squares grouped together in rooms. Thesegoal areas are usually aessible through only a few square entranes. One an deompose theproblem of solving a maze into:
• how to get eah diamond to one of the entranes, and
• how to pak/arrange the diamonds into the goal areas.Often these sub-goals an be solved independently, thus reduing the searh spae. This isahieved by de�ning a goal area, marking its entranes, and preomputing the order in whihgoal squares are �lled without introduing deadlok in the goal area. During the searh, if amove is generated that pushes a diamond onto the entrane square of a goal area, that moveis replaed with a goal maro that generates a sequene of moves to push the diamond diretlyto an appropriate goal square. By introduing goal maros the program was able to solve 17problems.5.2.7 Goal Cuts (R6, 24 solvedThe goal-maro heuristi eliminates all alternatives moves from onsideration when a goal marois present. The reason for this is that if it is possible to push diamond to its �nal destination,it will not a�et other moves and they an be ignored. The same reasoning an be appliedto the previous move: the move that pushed the diamond to the square from whih it will be"maro"-pushed to the goal square. Goal uts do exatly that reursively further up the tree: ifa diamond is pushed to a goal with a goal maro at the end without interleaving other diamondpushes, all alternatives to pushing that diamond are deleted from the move list. With goal utsthey were able to solve 24 problems from the test suite.5.2.8 Pattern Searh (R7, 48 solved)Pattern searhes �nd patterns of diamonds that prove that the lower bound is in error. Theerrors ould be small, improving the lower bound by as little as 2, or as muh as ∞ in the aseof a deadlok. All disovered patterns are saved and used throughout the searh. If a patternmathes a subset of diamonds in a position, then the penalty assoiated with that pattern isadded to the lower bound estimate for the position. In e�et, the program learns lower boundpenalty patterns and uses them to dynamially improve the lower bound funtion.Sokoban pattern searh two di�erent mazes are used: the original maze, the data strutureused by the A* searh, and the test maze whih will be used for the pattern searhes. A patternsearh iterates on the number of diamonds in the test maze. By de�nition, a deadlok is aon�guration of diamonds suh that not all of the diamonds an reah a goal. If a move A − Bis made, it might introdue a deadlok. If this deadlok was not present before the move, thenthe moved diamond, now on square B, must be part of that pattern. This is the initial diamondinluded into the test maze for the pattern searh. A speial version of A* tailored to be e�ientat pattern searhing, is alled to solve the test maze. It either returns in failure (no solution,hene deadlok), or it �nds a solution. In the latter ase, the number of pushes in the solutionmay disagree with that determined by the minimum mathing lower bound introdued in revision1. If so the lower bound funtion is in error and an be improved.By introduing pattern searh into Rolling Stone, the designers were able to solve 48 of the90 problems in the test suite. Pattern searh was the strategy that gave most inrease in thenumber of Sokoban puzzles the program was able to solve.5.2.9 Relevane Cut (R8, 50 solvedAnalysis of the trees built by an A* searh quikly reveals that the searh algorithm onsidersmove sequenes that no human would ever onsider. Even ompletely unrelated moves areBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 31



AI00 - Sokoban Solver 5.2. Review Of Existing Sokoban implementationstested in every legal ombination - all in an e�ort to prove that there is no solution for theurrent threshold. How an a program mimi an "understanding" of relevane? The designersof Rolling Stone suggest that a reasonable approximation of relevane is in�uene. If two movesdo not in�uene eah other, then it is unlikely that they are relevant to eah other. If a programhad a good "sense" of in�uene, it ould assume that in a given position all previous movesbelong to a (unknown) plan of whih a ontinuation an only be a move that is relevant - in theapproximation, is in�uening whatever was played previously. Relevane uts eliminate movesfrom the searh that appear to be irrelevant to the preeding sequene of moves. With relevaneuts implemented, Rolling Stone was able to solve 50 problems.5.2.10 Overestimation (R9, 54 solvedTo ensure optimality of solutions produed by A*-based algorithms, the heuristi has to beadmissible. This limits the hoie of knowledge that an be used. Even if some knowledgeorrelates well with the distane to the goal, but there is a hane that it overestimates, it annotbe used beause the solution optimality would not be guaranteed. This shows that optimalityhas it prie. Instead of �tting the heuristi distane to a solution h as losely as possible to theatual distane h∗, we are restrited to reating a lower bound. The error of suh a lower-boundfuntion is often larger than a funtion that is allowed to oasionally overestimate. The largerthe error of the lower-bound funtion, the less e�ient the searh. With overestimation theywere able to solve 54 of the test problems.5.2.11 Rapid Random Restart (R10, 57 solvedIn the implementation of Rolling Stone a strategy alled rapid random restart (RRR) is used.RRR assumes that by varying parameters to the solution algorithm (here searh), it is possibleto redue the solution time dramatially. Therefore, instead of using all the available time withone parameter setting, RRR repeatedly aborts the searh after a given e�ort limit and restartsit with di�erent (random) parameters.In Rolling Stone, RRR is used to interrupt an iteration and restart it with a di�erent moveordering sheme. With RRR 57 of the 90 problems ould be solved.
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Appendix ACodeA.1 NXC Code
� �1 #inlude "NXCDefs . h"3 #define POWER 70#define REVERSE 405 #define POWERTURN 60#define POWERROTATE 6079 #define TURN_PCT 20#define LIGHT_THRSHOLD 4511 #define TURN_ROTATION 4013 #define MOTOR_RIGHT OUT_A#define MOTOR_LEFT OUT_B15 #define MOTOR_BOTH OUT_AB17 // De f i n i t i on s o f the d i f f e r e n t motions o f the robo t#define CASE_S 019 #define CASE_L 1#define CASE_R 221 #define CASE_C 3#define CASE_B 423 #define CASE_TR 5#define CASE_TL 625 #define CASE_STOP −127 mutex right ;mutex left ;29 int LIGHT_LEFT = 0 ;31 int LIGHT_RIGHT = 0 ;int LIGHT_FRONT = 0 ;33 int left_run = 1 ;35 int right_run = 1 ;int left_run_bak = 0 ;37 int right_run_bak = 0 ;int an_run = 0 ;39 34



AI00 - Sokoban Solver A.1. NXC Codeint run_speed=60;41 int disp_md ;4345 /∗ ←֓
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ←֓

∗ Manually de f ined ommand s t r i n g f o r t e s t i n g47 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ←֓

∗/// i n t mds [ ℄ = {CASE_S,CASE_B,CASE_B};49 int mds [ ℄ = ←֓{1 , 2 , 0 , 2 , 3 , 2 , 3 , 5 , 2 , 0 , 3 , 2 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 1 , 3 , 5 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 2 , 0 , 2 , 1 , 0 , 3 , 2 , 1 , 0 , 2 , 2 , 0 , 0 , 0 , 0 , 3 , 5 , 0 , 0 , 1 , 0 , 0 , 2 , 2 , 3 , 2 , 0 , 0 , 2 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 3 , 2 , 0 , 2 , 0 , 0 , 1 , 2 , 2 , 0 , 3 , 5 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 3 , 5 , 0 , 0 , 0 , 2 , 0 , 1 , 0 , 1 , 1 , 3 , 1 , 2 , 0 , 0 , 0 , 0 , 2 , 0 , 2 , 0 , 0 , 0 , 1 , 2 , 2 , 3 , 5 , 0 , 0 , 1 , 1 , 0 , 3 , 1 , 2 , 2 , 0 , 0 , 3 , 2 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 3 , 5 , 1 , 1 , 0 , 3 , 1 , 3 , 2 , 0 , 2 , 2 , 3 } ;51 // i n t mds [ ℄ ={CASE_L, CASE_R, CASE_S, CASE_R, CASE_C, CASE_R, CASE_C, ←֓CASE_TL, CASE_R, CASE_S, CASE_C, CASE_R, CASE_L, CASE_S, CASE_L, ←֓CASE_S, CASE_S, CASE_L, CASE_S, CASE_S, CASE_S, CASE_C, CASE_L, ←֓CASE_C, CASE_TL, CASE_R, CASE_S, CASE_S, CASE_S, CASE_R, CASE_S, ←֓CASE_S, CASE_R, CASE_S, CASE_R, CASE_L, CASE_S, CASE_C, CASE_R, ←֓CASE_L, CASE_S, CASE_R, CASE_R, CASE_S, CASE_C, CASE_R, CASE_S, ←֓CASE_S, CASE_R, CASE_R, CASE_C, CASE_R, CASE_S, CASE_S, CASE_R, ←֓CASE_L, CASE_S, CASE_L, CASE_L, CASE_S, CASE_S, CASE_S, CASE_C, ←֓CASE_R, CASE_S, CASE_R, CASE_S, CASE_S, CASE_C, CASE_L, CASE_R, ←֓CASE_R, CASE_S, CASE_C, CASE_TL, CASE_L, CASE_S, CASE_S, CASE_S, ←֓CASE_L, CASE_S, CASE_L, CASE_S, CASE_S, CASE_S, CASE_C, CASE_TL, ←֓CASE_S, CASE_S, CASE_S, CASE_R, CASE_S, CASE_L, CASE_S, CASE_L, ←֓CASE_L, CASE_C, CASE_L, CASE_R, CASE_S, CASE_S, CASE_S, CASE_S, ←֓CASE_R, CASE_S, CASE_R, CASE_S, CASE_S, CASE_S, CASE_L, CASE_R, ←֓CASE_R, CASE_C, CASE_TR, CASE_S, CASE_S, CASE_L, CASE_L, CASE_S, ←֓CASE_C, CASE_L, CASE_R, CASE_R, CASE_S, CASE_S, CASE_C, CASE_R, ←֓CASE_L, CASE_S, CASE_L, CASE_S, CASE_S, CASE_L, CASE_S, CASE_S, ←֓CASE_S, CASE_S, CASE_L, CASE_S, CASE_C, CASE_TL, CASE_S, CASE_R, ←֓CASE_R, CASE_C, CASE_R, CASE_L, CASE_L, CASE_C, CASE_R, CASE_S, ←֓CASE_R, CASE_R, CASE_C, CASE_STOP};//run onee i gh ty53 // i n t mds [ ℄ = {CASE_S,CASE_S,CASE_TR};55 //run in e i g h t s// i n t mds [ ℄ = {CASE_S,CASE_L,CASE_S,CASE_R,CASE_S,CASE_R,CASE_S,CASE_R, ←֓CASE_S,CASE_R,CASE_S,CASE_L,CASE_S,CASE_L,CASE_S,CASE_L};57 /∗ End o f ommans s t i n g d e f i n i t i o n s ∗/59 int md_ounter = −1;61 /∗ ←֓
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ←֓63 ∗ In the f o l l ow i n g we de f i n e f un t i on s t ha t f un t i on s t ha t enab l e s or ←֓d i s a b l e s

∗ behav iour s . Note65 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ←֓

∗/67 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗69 ∗ Routine : d isab leRunBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 35



AI00 - Sokoban Solver A.1. NXC Code
∗ Parameters : None71 ∗ Return : noth ing
∗ Purpose : D i s a b l e s the autonomous forward movement r ou t i n e s .73 ∗ And s t op s the motors
∗75 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/void disableRun ( ) {77 Aquire ( left ) ;left_run = 0 ;79 Release ( left ) ;81 Aquire ( right ) ;//PlayTone (440 ,1000) ;83 right_run = 0 ;Release ( right ) ;85 Off ( MOTOR_RIGHT ) ;87 Off ( MOTOR_LEFT ) ;}89 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗91 ∗

∗ Routine : enableRun93 ∗ Parameters : i n t
∗ Return : noth ing95 ∗ Purpose : enab l e s the autonomous forward movement r ou t i n e s .
∗ The motors are not s t a r t e d here , t h i s on ly enab l e s97 ∗ t he  on t r o l t a s k
∗99 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/void enableRun ( int power ) {101 run_speed = power ;left_run = 1 ;103 right_run = 1 ;}105 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗107 ∗

∗ Routine : disableRunBak109 ∗ Parameters : None
∗ Return : noth ing111 ∗ Purpose : D i s a b l e s the runbak mode where we d r i v e bak one
∗ f i e l d a f t e r p l a  i n g the an .113 ∗ The motors are s toped .
∗115 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/void disableRunBak ( ) {117 Aquire ( left ) ;left_run_bak = 0 ;119 Release ( left ) ;121 Aquire ( right ) ;right_run_bak = 0 ;123 Release ( right ) ;125 Off ( MOTOR_RIGHT ) ;Off ( MOTOR_LEFT ) ;127 }Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 36



AI00 - Sokoban Solver A.1. NXC Code129 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗131 ∗ Routine : enableRunBak
∗ Parameters : None133 ∗ Return : noth ing
∗ Purpose : Enables the behaviour where we move a f i e l d bak135 ∗ a f t e r having p laed a an .
∗137 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/void enableRunBak ( ) {139 left_run_bak = 1 ;right_run_bak = 1 ;141 }143 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗145 ∗

∗ Routine : d i sab l eFron tSensor147 ∗ Parameters : None
∗ Return : noth ing149 ∗ Purpose : Stops the behav iou t used wh i l e moving a an .
∗ While in t h i s behaviour we use a a d i t i o n a l sensor151 ∗ inorder to s top p r e  i s e l y when the an i s on the
∗ ros s o f two i n t e r s e  t i n g l i n e s .153 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/155 void disableFrontSensor ( ) {an_run = 0 ;157 }159 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗161 ∗ Routine : enab leFrontSensor
∗ Parameters : None163 ∗ Return : noth ing
∗ Purpose : S t a r t s t he behaviour t ha t w i l l ensure t ha t the165 ∗ robo t p l a  e s the an o b j e  t a  u ra t e l y .
∗ While t h i s behaviour i s in e f f e  t we use an167 ∗ a d i t i o n a l sensor inorder to s top p r e  i s e l y when
∗ t he an i s on the ros s o f two i n t e r s e  t i n g l i n e s .169 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/171 void enableFrontSensor ( ) {an_run = 1 ;173 }175 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗177 ∗

∗ Routine : r unS t r a i g h t179 ∗ Parameters : i n t
∗ Return : noth ing181 ∗ Purpose : Drives forward a f i x e d amount , us ing the g i ven
∗ power s e t t i n g .183 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/185 void runStraight ( int power ) {//RotateMotor (OUT_AB,POWER,TURN_ROTATION) ;187 RotateMotorEx ( MOTOR_BOTH , power , TURN_ROTATION , 0 , true , fa l se ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 37



AI00 - Sokoban Solver A.1. NXC Code}189 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗191 ∗

∗ Routine : runRight193 ∗ Parameters : i n t
∗ Return : noth ing195 ∗ Purpose : Turns the robo t to the r i g h t and d r i v e s up to
∗ t he next jun t i on197 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/199 void runRight ( int power ) {runStraight ( power ) ;201 i f ( LIGHT_LEFT < LIGHT_THRSHOLD ) {//PlayTone (220 ,1000) ;203 }RotateMotor ( MOTOR_LEFT , power , 1 8 0 ) ;205 while ( LIGHT_RIGHT > LIGHT_THRSHOLD ) {//OnFwd(MOTOR_LEFT, power ) ;207 OnFwdSyn ( OUT_AB , power , 1 0 0 ) ;}209 }211 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗213 ∗ Routine : runRightRight
∗ Parameters : i n t215 ∗ Return : noth ing
∗ Purpose : Turns the robo t 180 deg . tu rn ing to the r i g h t and217 ∗ d r i v e s up to the next jun t i on us ing the g i ven
∗ power .219 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/221 void runRightRight ( int power ) {runStraight ( power ) ;223 // i f (LIGHT_LEFT < LIGHT_THRSHOLD){//PlayTone (220 ,1000) ;225 //}RotateMotor ( MOTOR_LEFT , power , 1 8 0 ) ;227 OnFwdSyn ( OUT_AB , power , 1 0 0 ) ;while ( LIGHT_RIGHT > LIGHT_THRSHOLD ) {229 //PlayTone (220 ,1000) ;}231 Off ( OUT_AB ) ;233 RotateMotor ( MOTOR_LEFT , power , 1 8 0 ) ;OnFwdSyn ( OUT_AB , power , 1 0 0 ) ;235 while ( LIGHT_RIGHT > LIGHT_THRSHOLD ) {//237 }Off ( OUT_AB ) ;239 }241 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗243 ∗ Routine : runLef t
∗ Parameters : i n t245 ∗ Return : noth ing
∗ Purpose : Turns the robo t to the l e f t and d r i v e s up toBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 38



AI00 - Sokoban Solver A.1. NXC Code247 ∗ t he next jun t i on
∗249 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/void runLeft ( int power ) {251 runStraight ( power ) ;// i f (LIGHT_LEFT < LIGHT_THRSHOLD){253 //PlayTone (440 ,1000) ;//}255 RotateMotor ( MOTOR_RIGHT , power , 1 8 0 ) ;while ( LIGHT_LEFT > LIGHT_THRSHOLD ) {257 //OnFwd(MOTOR_RIGHT, power ) ;OnFwdSyn ( OUT_AB , power ,−100) ;259 }261 }263 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗265 ∗ Routine : runLe f tLe f t
∗ Parameters : i n t267 ∗ Return : noth ing
∗ Purpose : Turns the robo t 180 deg . tu rn ing to the l e f t and269 ∗ d r i v e s up to the next jun t i on us ing the g i ven
∗ power .271 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/273 void runLeftLeft ( int power ) {runStraight ( power ) ;275 // i f (LIGHT_RIGHT < LIGHT_THRSHOLD){//PlayTone (440 ,1000) ;277 //}RotateMotor ( MOTOR_RIGHT , power , 1 8 0 ) ;279 OnFwdSyn ( OUT_AB , power ,−100) ;while ( LIGHT_LEFT > LIGHT_THRSHOLD ) {281 //OnFwd(MOTOR_RIGHT, power ) ;}283 Off ( OUT_AB ) ;285 RotateMotor ( MOTOR_RIGHT , power , 1 8 0 ) ;OnFwdSyn ( OUT_AB , power ,−100) ;287 while ( LIGHT_LEFT > LIGHT_THRSHOLD ) {//OnFwd(MOTOR_RIGHT, power ) ;289 }Off ( OUT_AB ) ;291 }/∗293 void runLe f tLe f t ( i n t power ) {runS t r a i g h t ( power ) ;295 i f (LIGHT_LEFT < LIGHT_THRSHOLD){//PlayTone (440 ,1000) ;297 }RotateMotor (MOTOR_RIGHT, power ,180) ;299 whi l e (LIGHT_LEFT > LIGHT_THRSHOLD){//OnFwd(MOTOR_RIGHT, power ) ;301 OnFwdSyn (OUT_AB, power ,−100) ;}303 RotateMotor (MOTOR_RIGHT, power ,180) ;wh i l e (LIGHT_LEFT > LIGHT_THRSHOLD){305 //OnFwd(MOTOR_RIGHT, power ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 39



AI00 - Sokoban Solver A.1. NXC CodeOnFwdSyn (OUT_AB, power ,−100) ;307 }}309 ∗/311 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗313 ∗ Routine : genNxtCmd
∗ Parameters : n u l l315 ∗ Return : i n t
∗ Purpose : Returns the next ommand to be exeu t ed317 ∗ Stops a f t e r exeu t ing the whole l i s t in mds [ ℄
∗319 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/int genNxtCmd ( ) {321 //md_ounter = ( md_ounter + 1) % ArrayLen (mds ) ;323 md_ounter++;325 i f ( md_ounter > ( ArrayLen ( mds )−1) ) {md_ounter−−;327 return CASE_STOP ;}329 else return mds [ md_ounter ℄ ;331 // re turn mds [ md_ounter ℄ ;333 }335 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗337 ∗ Routine : runInEights
∗ Parameters : i n t339 ∗ Return : i n t
∗ Purpose : Test rou t ine used wh i l e d r i v i n g the robo t in341 ∗ f i g u r e e i g h t s n t imes
∗343 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/int runInEights ( int n ) {345 md_ounter++;for ( int i = 0 ; i < n ; i++){347 return mds [ md_ounter ℄ ;}349 }351 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗353 ∗ Routine : readSensors
∗ Parameters : n u l l355 ∗ Return : void
∗ Purpose : Cout inous ly p o l l t he sensor s and s t o r e t h e i r357 ∗ va l u e s in g l o b a l v a r i a b l e s
∗359 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/task readSensors ( ) {361 while ( true ) {LIGHT_RIGHT = Sensor ( S1 ) ;363 LIGHT_LEFT = Sensor ( S2 ) ;LIGHT_FRONT = Sensor ( S3 ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 40



AI00 - Sokoban Solver A.1. NXC Code365 }}367 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗369 ∗

∗ Routine : runningWithCan371 ∗ Parameters : n u l l
∗ Return : i n t373 ∗ Purpose : Sp e  i a l  on t r o l f o r moving wi th a an/ jewe l ,
∗ enab l e s the robo t to a u ra t e l y p lae a j ewe l /an375 ∗ on the i n t e r s e  t i o n o f two l i n e s , by us ing the
∗ ex t ra f r on t sensor .377 ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/379 task runningWithCan ( ) {while ( true ) {381 i f ( an_run ) {i f ( LIGHT_FRONT < LIGHT_THRSHOLD ) {383 //PlayTone (440 ,1000) ;disableRun ( ) ;385 disableFrontSensor ( ) ;387 enableRunBak ( ) ;}389 }}391 }393 task motorRight ( ) {395 while ( true ) {while ( left_run ) {397 Aquire ( left ) ;//PlayTone (220 ,10) ;399 i f ( LIGHT_RIGHT > LIGHT_THRSHOLD )OnFwd ( MOTOR_RIGHT , run_speed ) ;401 else {Off ( MOTOR_RIGHT ) ;403 }Release ( left ) ;405 }//Off (MOTOR_RIGHT) ;407 }}409 task motorLeft ( ) {411 while ( true ) {while ( right_run ) {413 Aquire ( right ) ;//PlayTone (220 ,10) ;415 i f ( LIGHT_LEFT > LIGHT_THRSHOLD )OnFwd ( MOTOR_LEFT , run_speed ) ;417 else {Off ( MOTOR_LEFT ) ;419 }Release ( right ) ;421 }//Off (MOTOR_LEFT) ;423 }Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 41



AI00 - Sokoban Solver A.1. NXC Code}425 task motorRightBak ( ) {427 while ( true ) {while ( left_run_bak ) {429 Aquire ( left ) ;i f ( LIGHT_RIGHT > LIGHT_THRSHOLD )431 OnFwd ( MOTOR_LEFT ,−REVERSE ) ;else {433 Off ( MOTOR_LEFT ) ;}435 Release ( left ) ;}437 //Off (MOTOR_RIGHT) ;}439 }441 task motorLeftBak ( ) {while ( true ) {443 while ( right_run_bak ) {Aquire ( right ) ;445 i f ( LIGHT_LEFT > LIGHT_THRSHOLD )OnFwd ( MOTOR_RIGHT ,−REVERSE ) ;447 else {Off ( MOTOR_RIGHT ) ;449 }Release ( right ) ;451 }//Off (MOTOR_LEFT) ;453 }455 }457 task ontrolDiretion ( ) {while ( true ) {459 i f ( ( LIGHT_LEFT < LIGHT_THRSHOLD && LIGHT_RIGHT < ←֓LIGHT_THRSHOLD ) ) {disableRun ( ) ;461 disableRunBak ( ) ;463 /∗ krims−krans der undersøger den ønskede r e t n i n g ∗/int md = genNxtCmd ( ) ;465 // i n t md = runInEights (5) ;disp_md = md ;467 //PlayTone (110 ,1000) ;469 swith ( md ) {ase CASE_S :471 runStraight ( POWER ) ;//PlayTone (440 ,1000) ;473 enableRun ( POWER ) ;break ;475 ase CASE_L :runLeft ( POWERTURN ) ;477 //PlayTone (440 ,1000) ;enableRun ( POWERTURN ) ;479 break ;ase CASE_R :481 runRight ( POWERTURN ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 42



AI00 - Sokoban Solver A.1. NXC Code//PlayTone (110 ,1000) ;483 enableRun ( POWERTURN ) ;break ;485 ase CASE_TR :runRightRight ( POWERROTATE ) ;487 //PlayTone (110 ,1000) ;enableRun ( POWERROTATE ) ;489 break ;ase CASE_TL :491 runLeftLeft ( POWERROTATE ) ;//PlayTone (110 ,1000) ;493 enableRun ( POWERROTATE ) ;break ;495 ase CASE_C :enableFrontSensor ( ) ;497 runStraight ( POWER ) ;enableRun ( POWER ) ;499 break ;ase CASE_B :501 runStraight (−REVERSE ) ;enableRunBak ( ) ;503 break ;ase CASE_STOP :505 break ;default :507 break ;}509 }}511 }513 task displaySensors ( ) {while ( TRUE ) {515 ClearSreen ( ) ;TextOut (0 , LCD_LINE1 , "L : " ) ;517 NumOut (15 , LCD_LINE1 , LIGHT_LEFT ) ;TextOut (30 , LCD_LINE1 , "R: " ) ;519 NumOut (45 , LCD_LINE1 , LIGHT_RIGHT ) ;521 TextOut (0 , LCD_LINE2 , "md ounter : " ) ;NumOut (70 , LCD_LINE2 , md_ounter ) ;523 TextOut (0 , LCD_LINE3 , "an_run? : " ) ;525 NumOut (70 , LCD_LINE3 , an_run ) ;527 TextOut (60 , LCD_LINE1 , "F : " ) ;NumOut (75 , LCD_LINE1 , LIGHT_FRONT ) ;529 TextOut (0 , LCD_LINE5 , "Left−run : " ) ;531 NumOut (68 , LCD_LINE5 , left_run ) ;533 TextOut (0 , LCD_LINE6 , "Rigtht−run : " ) ;NumOut (68 , LCD_LINE6 , right_run ) ;535 TextOut (0 , LCD_LINE7 , "Case i s now : " ) ;537 NumOut (78 , LCD_LINE7 , disp_md ) ;539 Wait (500) ;}Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 43



AI00 - Sokoban Solver A.1. NXC Code541 }543 task main ( ) {545 SetSensorLight ( S1 ) ;SetSensorLight ( S2 ) ;547 SetSensorLight ( S3 ) ;//SetSensorTouh (S4 ) ;549 // SetCustomSensorPerentFul lSa le (S1 ,50) ;551 Preedes ( readSensors , motorRight , motorLeft , ontrolDiretion , ←֓runningWithCan , motorRightBak , motorLeftBak ) ; // d i s p l a ySen so r s553 }
� �
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AI00 - Sokoban Solver A.2. Java odeA.2 Java odeA.2.1 SokobanSolver lass
� �1 pakage ai00 . sokoban ;3 import java . util . ArrayList ;import java . util . Iterator ;5 import java . util . HashMap ;import java . util . PriorityQueue ;7 import ai00 . sokoban . Node ;9 import ai00 . sokoban . Position ;import ai00 . sokoban . parser . SokobanParser ;11 /∗∗13 ∗ $LastChangedRevision : 96 $
∗ $LastChangedDate : 2007−10−26 10 :50 :20 +0200 ( fre , 26 ok t 2007) $15 ∗ $LastChangedBy : gronbaek $
∗17 ∗ SokobanSolver3 i s the primary  l a s s in the Sokoban So l ve r program .
∗ I t uses a SokbanMapReader map as bas i s , and then s o l v e s the sokoban ←֓pu z z l e19 ∗ by u t i l i s i n g a t r e e s t r u  t u r e and an A∗ (A s t a r ) a l gor i t hm .
∗21 ∗ The requirements f o r the map i s s p e  i f i e d in the SokobanMapReader ←֓ l a s s .
∗23 ∗ Eah node in the p o s s i b l e s o l u t i o n i s proe s sed in three s t e p s .
∗ Fi r s t s t e p : a wh i l e loop runs through eah node in the open l i s t . A ←֓map i s popu la t ed25 ∗ using the informat ion from the node , and i t ' s heked i f t he urren t ←֓node i s
∗ t he s o l u t i o n . I f not , then hek f o r v a i l d p o s i t i o n s t h a t the ←֓diamonds an be27 ∗ pushed from .
∗29 ∗ Seond s t e p : Chek f o r v a l i d p o s i t i o n s
∗31 ∗ �author Bjorn Gronbaek
∗ �author Brian Horn33 ∗ �author Jon Kjaersgaard
∗35 ∗ �version 3.0
∗/37 publi lass SokobanSolver {SokobanMapReader map ;39 boolean debug = fa l se ;boolean showstate = true ;41 /∗∗ The s e t o f nodes t h a t have been searhed through ∗/43 private HashMap<Integer , Objet> losed = new HashMap<Integer , Objet ←֓>() ;private HashMap<Integer , HashMap<Integer , Objet>> outerClosed = new ←֓HashMap<Integer , HashMap<Integer , Objet>>() ;45 private PriorityQueue<Node> open = new PriorityQueue<Node>() ;47 /∗∗ The max searh depth ∗/Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 45



AI00 - Sokoban Solver A.2. Java odeint maxSearhDistane = 150 ;49 int maxDepth = 0 ;51 /∗∗
∗ Create a new SokobanSolver o b j e  t f o r s o l v i n g . The map must uphold ←֓t he s p e  i f i  a t i o n s in the53 ∗ SokobanMapReader  l a s s .
∗ I f t he debug parameter i s s e t t rue l o t s o f output w i l l be p r i n t e d ←֓to system . out . This might take55 ∗ very long time .
∗ I f t he shows ta t e s parameter i s s e t t rue a sma l l map wi th the ←֓p o s i t i o n o f the diamonds i s p r i n t e d57 ∗ f o r eah new node proe s sed .
∗59 ∗ �param mapf i l e t he map to be s o l v e d .
∗ �param debug show debug informat ion .61 ∗ �param shows ta t e s show map f o r eah node in the t r e e .
∗/63 publi SokobanSolver ( String mapfile , boolean debug , boolean showstates ) ←֓{map = new SokobanMapReader ( mapfile ) ;65 map . reateMap ( ) ;this . debug = debug ;67 this . showstate = showstates ;}69 /∗∗71 ∗ The main method used when s o l v i n g a map .
∗73 ∗ �return an a r r a y l i s t wi th p o s i t i o n s the robo t shou ld go through .
∗/75 publi ArrayList<ArrayList<Position>> solveMap ( ) {System . out . println (" S t a r t i n g path s o l v i ng " ) ;77 /∗  l e a r the open and  l o s e d l i s t ∗/79 losed . lear ( ) ;open . lear ( ) ;81 /∗ This i s our i n i t i a l node . I t has no parent , and i s added to the ←֓open l i s t ∗/83 Node node = new Node ( map . diamonds , map . man ) ;node . parent = null ;85 node . depth = 0 ;node . ost = 0 ;87 node . heuristi = 0 ;open . add ( node ) ;89 int numberOfNodes = 0 ;91 /∗ While the re i s open nodes , ont inue searh ∗/while ( ( maxDepth < maxSearhDistane ) && ( open . size ( ) != 0) ) {93 numberOfNodes++;95 /∗ Get the next node in the open l i s t , and remove i t from the l i s t ←֓

∗/Node urrentNode = open . poll ( ) ;97 /∗ Create a new map , wi th the s t a t e in format ion from the node ∗/99 map . insertPositions ( urrentNode . diamonds , urrentNode . man ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 46



AI00 - Sokoban Solver A.2. Java ode101 /∗ Debug informat ion be ing p r i n t e d below here ∗/i f ( showstate ) {103 System . out . println ( map . man ) ;System . out . println ( map ) ;105 }107 i f ( debug ) System . out . print ( "Open nodes : "+open . size ( )+"\ t Closed ←֓nodes : "+losed . size ( )+"\ t " ) ;i f ( debug ) System . out . println ( "Depth : "+urrentNode . depth ) ;109 i f ( debug ) System . out . println ( map . goals+" "+urrentNode . diamonds ) ;111 i f ( ! debug ) {i f ( numberOfNodes % 1000 == 0) System . out . println ( "Open nodes : "+ ←֓open . size ( )+"\ t Closed nodes : "+losed . size ( )+"\ t depth : "+ ←֓maxDepth ) ;113 }/∗ End o f debug ∗/115 /∗ hek i f we have found the s o l u t i o n ∗/117 i f ( map . goals . toString ( ) . equals ( urrentNode . diamonds . toString ( ) ) ) {System . out . println ( "Found a s o l u t i o n ! ! ! " ) ;119 System . out . println ( "Depth : "+urrentNode . depth ) ;System . out . print ( "Open nodes : "+open . size ( )+"\ t Closed nodes : "+ ←֓losed . size ( )+"\ t " ) ;121 return proessSolution ( urrentNode ) ;123 }125 /∗ I f we haven ' t found the s o l u t i on , proeed to hek the new ←֓v a l i d p o s i t i o n s f o r the new node ∗/hekValidPositions ( urrentNode ) ;127 /∗ Clear the map a f t e r proe s s ing a node , and s t a r t again , wi th a ←֓new node ∗/129 map . removePositions ( ) ;}131 /∗ I f we g e t to here , something i s wrong ∗/133 System . out . println ("Done . . . i f we haven ' t found a path , the r e ' s no ←֓s o l u t i o n ! " ) ;return null ;135 }137 private ArrayList<ArrayList<Position>> proessSolution ( Node ←֓urrentNode ) {System . out . println ("SOLUTION HERE: " ) ;139 ArrayList<SokobanSortedList> diamondList = new ArrayList< ←֓SokobanSortedList >() ;141 ArrayList<ArrayList<Position>> pathList = new ArrayList<ArrayList< ←֓Position>>() ;143145 diamondList . add ( urrentNode . diamonds ) ;pathList . add ( urrentNode . path ) ;147 while ( urrentNode . parent != null ) {urrentNode = urrentNode . parent ;149 diamondList . add ( urrentNode . diamonds ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 47



AI00 - Sokoban Solver A.2. Java ode151 i f ( urrentNode . path != null ) {pathList . add ( urrentNode . path ) ;153 }//System . out . p r i n t l n ( urrentNode . path ) ;155 }157 /∗f o r ( SokobanSortedLis t l i s t : diamondList ) {159 map . i n s e r tP o s i t i o n s ( l i s t , new Pos i t i on (0 ,0) ) ;System . out . p r i n t l n (map) ;161 System . out . p r i n t l n ←֓("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ");map . removePosi t ions ( ) ;163 }
∗/165 return pathList ;167 }169 private void hekValidPositions ( Node urrentNode ) {171 /∗ For eah diamond in the map , hek f o r new v a l i d p o s i t i o n s ∗/SokobanSortedList allValidPositions = new SokobanSortedList ( ) ;173 PriorityQueue<Node> allNewNodes = new PriorityQueue<Node>() ;175 for ( Position diamond : urrentNode . diamonds ) {i f ( debug ) System . out . println ( "Looking at diamond "+diamond . x+" , "+ ←֓diamond . y ) ;177 /∗ Get v a l i d p o s i t i o n s f o r the diamond ∗/179 SokobanSortedList validPositions = getValidPositionsForDiamond ( ←֓diamond ) ;181 /∗ Create open nodes f o r the v a l i d po s i t i on s , f o r t h i s diamond ∗/PriorityQueue<Node> openNodes = reateOpenNodes ( validPositions , ←֓diamond , urrentNode ) ;183 allValidPositions . addAll ( validPositions ) ;185 allNewNodes . addAll ( openNodes ) ;}187 i f ( debug ) {189 System . out . println ( "Al l diamonds t r ea ted : "+allValidPositions . size ←֓( )+" va l i d p o s i t i o n s : "+allValidPositions ) ;System . out . println ( "Al l diamonds t r ea ted : "+allNewNodes . size ( )+" ←֓new nodes . " ) ;191 }193 hekForClosedNodes ( urrentNode , allValidPositions , allNewNodes ) ;}195 private void hekForClosedNodes ( Node urrentNode , SokobanSortedList ←֓allValidPositions , PriorityQueue<Node> allNewNodes ) {197 HashMap<Integer , Objet> innerClosed ;i f ( outerClosed . ontainsKey (new Integer ( urrentNode . diamonds . hashCode ←֓( ) ) ) ) {199 i f ( debug ) {Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 48



AI00 - Sokoban Solver A.2. Java odeSystem . out . println ( "Diamonds ARE in  l o s ed l i s t " ) ;201 }innerClosed = outerClosed . get (new Integer ( urrentNode . diamonds . ←֓hashCode ( ) ) ) ;203 i f ( innerClosed . ontainsKey (new Integer ( allValidPositions . hashCode ←֓( ) ) ) ) {i f ( debug ) {205 System . out . println ( "New po s i t i o n s ARE in  l o s ed l i s t " ) ;}207 }else {209 innerClosed . put (new Integer ( allValidPositions . hashCode ( ) ) , null ) ;open . addAll ( allNewNodes ) ;211 i f ( debug ) {System . out . println ( "New po s i t i o n s ARE NOT in  l o s ed l i s t " ) ;213 System . out . println ( "New s i z e o f open l i s t are : "+open . size ( ) ) ;}215 }}217 else{outerClosed . put ( (new Integer ( urrentNode . diamonds . hashCode ( ) ) ) , ←֓new HashMap<Integer , Objet>() ) ;219 open . addAll ( allNewNodes ) ;i f ( debug ) {221 System . out . println ( "Diamonds ARE NOT in  l o s ed l i s t " ) ;System . out . println ( "New s i z e o f open l i s t are : "+open . size ( ) ) ;223 }}225 }227 private PriorityQueue<Node> reateOpenNodes ( SokobanSortedList ←֓validPositions , Position diamond , Node oldNode ) {PriorityQueue<Node> newNodes = new PriorityQueue<Node>() ;229 for ( Position position : validPositions ) {231 /∗ The new po s i t i o n o f the man . . . t he o ld p o s i t i o n o f the diamond ←֓

∗/Position newman = new Position ( diamond . x , diamond . y ) ;233 /∗ Movement o f t he diamond ∗/235 int deltaX = diamond . x − position . x ;int deltaY = diamond . y − position . y ;237 /∗ New l i s t o f diamods ,  rea t ed from the o ld l i s t ∗/239 SokobanSortedList newdiamonds = new SokobanSortedList ( ) ;241 for ( Position oldDiamond : oldNode . diamonds ) {/∗243 i f ( oldDiamond . x != newman . x && oldDiamond . y != newman . y ) {newdiamonds . add ( oldDiamond ) ;245 }
∗/247 i f ( ! oldDiamond . equals ( newman ) ) {newdiamonds . add ( oldDiamond ) ;249 }}251 /∗ Remove the diamond at the p o s i t i o n o f the man ∗/253 //newdiamonds . remove (newman) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 49



AI00 - Sokoban Solver A.2. Java ode255 /∗ And add the moved diamond ' s new po s i t i o n ∗/Position diamondPos = new Position ( diamond . x + deltaX , diamond . y + ←֓deltaY ) ;257 newdiamonds . add ( diamondPos ) ;259 Node newnode = new Node ( newdiamonds , newman ) ;261 newnode . setParent ( oldNode ) ;newnode . ost = alulateCost ( )+oldNode . ost ;263 newnode . heuristi = alulateHeuristi ( diamondPos ) ;newnode . path = map . findPath ( position ) ;265 newnode . path . add (0 , newman ) ;267 i f ( debug ) System . out . println ( "Adding new open node : ( "+diamondPos . ←֓x+" , "+diamondPos . y+" ) o s t : "+newnode . ost+" h e u r i s t i  : "+ ←֓newnode . heuristi ) ;269 i f ( newnode . depth > maxDepth ) maxDepth = newnode . depth ;271 newNodes . add ( newnode ) ;}273 return newNodes ;}275 private SokobanSortedList getValidPositionsForDiamond ( Position pos ) {277 SokobanSortedList validPositions = new SokobanSortedList ( ) ;279 for ( int x=−1;x<2;x++) {for ( int y=−1;y<2;y++) {281 // hek i f t i l e i s t he same as urren t t i l e283 i f ( ( x == 0) && (y == 0) ) {ontinue ; //jump to next f o r285 }287 // hek i f t i l e i s d iagona l p l aedi f ( ( x != 0) && (y != 0) ) {289 ontinue ; //jump to next f o r}291 /∗ Chek i f t he p o s i t i o n i s not a wal l , i f t he oppo s i t e p o s i t i o n ←֓i s not a wa l l and f i n a l l y293 ∗ i f t he man an reah the p o s i t i o n
∗/295 //System . out . p r i n t l n ( ( pos . x+x )+","+(pos . y+y )+": "+map . t e r r a i n [ ←֓pos . x+x ℄ [ pos . y+y ℄ ) ;i f ( map . terrain [ pos . x+x ℄ [ pos . y+y ℄ == SokobanMapStatis . GROUND && ←֓// the t a r g e t p o s i t i o n297 map . terrain [ pos . x−x ℄ [ pos . y−y ℄ == SokobanMapStatis . GROUND ) { ←֓// the p o s i t i o n the man must reahi f ( debug ) System . out . println ( " Pos i t i on : "+(pos . x+x )+" , "+(pos . y ←֓+y )+" i s not a wa l l " ) ;299 ArrayList<Position> path = map . findPath (new Position ( pos . x+x , ←֓pos . y+y ) ) ;i f ( path != null ) { // i s the re a path f o r the man301 i f ( debug ) System . out . println ( " Pos i t i on : "+(pos . x+x )+" , "+(pos ←֓. y+y )+" i s r e a hab l e l " ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 50



AI00 - Sokoban Solver A.2. Java odevalidPositions . add ( pushDiamond ( pos , new Position ( pos . x+x , pos ←֓. y+y ) ) ) ; // the new v a l i d p o s i t i o n303 //System . out . p r i n t l n ( path ) ;i f ( debug ) System . out . println ( "Adding p o s i t i o n : "+(pos . x+x )+" ←֓, "+(pos . y+y ) ) ;305 }}307 }}309 return validPositions ;311 }313 Position pushDiamond ( Position diamond , Position pushFrom ) {return new Position ( diamond . x−(diamond . x−pushFrom . x ) , diamond . y−( ←֓diamond . y−pushFrom . y ) ) ;315 }317 private f loat alulateCost ( ) {/∗ Sine the f i e l d s are always i d e n t i  a l , j u s t r e turn the same va lue ←֓always ∗/319 return 10 ;}321 private f loat alulateHeuristi ( Position diamondPos ) {323 int losestrange = Integer . MAX_VALUE ;325 Position urrent ;Iterator<Position> it = map . goals . iterator ( ) ;327 while ( it . hasNext ( ) ) {urrent = it . next ( ) ;329 int distane = getDistane ( diamondPos , urrent ) ;i f ( distane < losestrange ) {331 losestrange = distane ;}333 }335 int manrange = getDistane ( diamondPos , map . man ) ;337 return ( losestrange + manrange ) ∗ 10 ;}339341 private int getDistane ( Position diamondPos , Position urrent ) {343 int deltaX = diamondPos . x − urrent . x ;int deltaY = diamondPos . y − urrent . y ;345 return ( int ) Math . sqrt ( Math . pow ( deltaX , 2 )+Math . pow ( deltaY , 2 ) ) ;}347 /∗∗349 ∗ �param args
∗/351 publi stati void main ( String [ ℄ args ) {boolean debug = Boolean . valueOf ( args [ 1 ℄ ) ;353 boolean showstate = Boolean . valueOf ( args [ 2 ℄ ) ;SokobanSolver solver = new SokobanSolver ( args [ 0 ℄ , debug , showstate ) ;355 ArrayList<ArrayList<Position>> solution = solver . solveMap ( ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 51



AI00 - Sokoban Solver A.2. Java ode357 i f ( solution != null ) {for ( ArrayList<Position> list : solution ) {359 System . out . println ( list ) ;}361 System . out . println (new SokobanParser ( solution ) . parse2simlator ( ) ) ;String robotResult = new SokobanParser ( solution ) . parse2robot ( ) ;363 System . out . println ( robotResult ) ;System . out . println ( SokobanParser . leanCanRuns ( robotResult ) ) ;365 }}367 }
� �A.2.2 SokobanMapReader lass
� �1 pakage ai00 . sokoban ;3 import java . io . BufferedReader ;import java . io . FileNotFoundExeption ;5 import java . io . FileReader ;import java . io . IOExeption ;7 import java . util . ArrayList ;import java . util . List ;9 import java . util . PriorityQueue ;import java . util . Sanner ;11 /∗∗13 ∗ $LastChangedRevision : 96 $
∗ $LastChangedDate : 2007−10−26 10 :50 :20 +0200 ( fre , 26 ok t 2007) $15 ∗ $LastChangedBy : gronbaek $
∗17 ∗ �author Bjorn Gronbaek
∗ �author Brian Horn19 ∗ �author Jon Kjaersgaard
∗21 ∗/publi lass SokobanMapReader {23 private BufferedReader inputStream ;private String filename ;25 private Sanner onfigSanner = null ;27 publi int [ ℄ [ ℄ terrain ;int width ;29 int height ;publi SokobanSortedList diamonds = new SokobanSortedList ( ) ;31 publi SokobanSortedList goals = new SokobanSortedList ( ) ;publi Position man ;33 publi SokobanMapReader ( String filename ) {35 this . filename = filename ;}37 private void readMap ( String filename ) {39 try {inputStream = new BufferedReader (new FileReader ( filename ) ) ;41 } ath ( FileNotFoundExeption e ) {// TODO Auto−generated ath b l o  k43 e . printStakTrae ( ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 52



AI00 - Sokoban Solver A.2. Java ode}45 }47 publi void insertPositions ( SokobanSortedList diamonds , Position man ) {for ( Position pos : diamonds ) {49 terrain [ pos . x ℄ [ pos . y ℄ = SokobanMapStatis . DIAMOND ;}51 this . man = man ;}53 publi void removePositions ( ) {55 for ( int y =0; y<terrain [ 0 ℄ . length ; y++){for ( int x=0;x<terrain . length ; x++){57 i f ( terrain [ x ℄ [ y℄==SokobanMapStatis . DIAMOND ) {terrain [ x ℄ [ y ℄ = SokobanMapStatis . GROUND ;59 }}61 }this . man = null ;63 }65 publi void reateMap ( ) {readMap ( filename ) ;67 System . out . println ("Creat ing MAP" ) ;try {69 onfigSanner = new Sanner ( inputStream . readLine ( ) ) ;width = onfigSanner . nextInt ( ) ;71 height = onfigSanner . nextInt ( ) ;73 terrain = new int [ width ℄ [ height ℄ ;75 System . out . println ( "New map i s : "+width+"x"+height ) ;77 StringBuffer sb ;for ( int y=0;y<height ; y++){79 sb = new StringBuffer ( inputStream . readLine ( ) ) ;har tmp ;81 for ( int x=0; x<width ; x++){i f (x < sb . length ( ) ) tmp = sb . harAt ( x ) ;83 else tmp = 'E ' ;swith ( tmp ) {85 ase 'X ' :terrain [ x ℄ [ y ℄ = SokobanMapStatis . WALL ;87 break ;ase ' J ' :89 diamonds . add (new Position (x , y ) ) ;break ;91 ase 'G ' :goals . add (new Position (x , y ) ) ;93 break ;ase 'M' :95 man = new Position (x , y ) ;break ;97 default ://map . se tTerra in ( j , i , SokobanMap .GROUND) ;99 break ;}101 }}Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 53



AI00 - Sokoban Solver A.2. Java ode103 System . out . println ( "x − width = "+terrain . length ) ;105 System . out . println ( "y − he ight = "+terrain [ 0 ℄ . length ) ;107 } ath ( IOExeption e ) {System . out . println ( " F i l e Problem ! ! ! ! " ) ;109 e . printStakTrae ( ) ;}111 }113 publi String toString ( ) {String temp = "" ;115 for ( int y = 0 ; y < terrain [ 0 ℄ . length ; y++) {for ( int x = 0 ; x < terrain . length ; x++) {117 i f ( terrain [ x ℄ [ y℄==SokobanMapStatis . GROUND ) {temp+=" . " ;119 }i f ( terrain [ x ℄ [ y℄==SokobanMapStatis . DIAMOND ) {121 temp+="D" ;}123 i f ( terrain [ x ℄ [ y℄==SokobanMapStatis . GOAL ) {temp+="G" ;125 }i f ( terrain [ x ℄ [ y℄==SokobanMapStatis . WALL ) {127 temp+="W" ;}129 i f ( terrain [ x ℄ [ y℄==SokobanMapStatis . MAN ) {temp+="M" ;131 }}133 temp+="\n" ;}135 return temp ;}137 publi void printFile ( ) {139 readMap ( filename ) ;String line ;141 try {line = inputStream . readLine ( ) ;143 while ( line != null ) {System . out . println ( line ) ;145 line = inputStream . readLine ( ) ;}147 } ath ( IOExeption e ) {System . out . println ( "Read e r r o r on f i l e " ) ;149 e . printStakTrae ( ) ;}151 }153 /∗pu b l i  Set<PathPosi t ion> findPath ( Pos i t i on p o s i t i o n ) {155 Set<PathPosi t ion> r e s u l t = new TreeSet<PathPosi t ion >() ;PathPosi t ion orgPos = new PathPosi t ion (man. x , man. y ) ;157 orgPos . s e tOr i g i nPo s i t i on ( orgPos ) ;r e s u l t . add ( orgPos ) ;159 i n t pathLength = 100;t e r r a i n [man. x ℄ [man . y ℄ = 100;161 pathLength++;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 54



AI00 - Sokoban Solver A.2. Java odeI t e r a t o r <PathPosi t ion> i t = r e s u l t . i t e r a t o r ( ) ;163 whi l e ( i t . hasNext ( ) ) {PathPosi t ion pos = i t . next ( ) ;165 pathLength = t e r r a i n [ pos . x ℄ [ pos . y ℄ ;i f ( pos . x == po s i t i o n . x && pos . y == po s i t i o n . y ) {167 f o r ( i n t i = 0 ; i < t e r r a i n . l e n g t h ; i++) {f o r ( i n t j = 0 ; j < t e r r a i n [ 0 ℄ . l e n g t h ; j++) {169 i f ( t e r r a i n [ i ℄ [ j ℄ > 99) {t e r r a i n [ i ℄ [ j ℄= SokobanMap2 .GROUND;171 }}173 }}175 i f ( t e r r a i n [ pos . x−1℄[ pos . y ℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion ( pos . x−1,pos . y ) ;177 newPo . s e tOr i g i nPo s i t i on ( orgPos ) ;t e r r a i n [ pos . x−1℄[ pos . y℄=pathLength +1;179 r e s u l t . add (newPo) ;}181 i f ( t e r r a i n [ pos . x+1℄[ pos . y ℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion ( pos . x+1,pos . y ) ;183 newPo . s e tOr i g i nPo s i t i on ( orgPos ) ;t e r r a i n [ pos . x+1℄[ pos . y℄=pathLength +1;185 r e s u l t . add (newPo) ;}187 i f ( t e r r a i n [ pos . x ℄ [ pos . y−1℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion ( pos . x , pos . y−1) ;189 newPo . s e tOr i g i nPo s i t i on ( orgPos ) ;t e r r a i n [ pos . x ℄ [ pos . y−1℄=pathLength +1;191 r e s u l t . add (newPo) ;}193 i f ( t e r r a i n [ pos . x ℄ [ pos . y+1℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion ( pos . x , pos . y+1) ;195 newPo . s e tOr i g i nPo s i t i on ( orgPos ) ;t e r r a i n [ pos . x ℄ [ pos . y+1℄= pathLength +1;197 r e s u l t . add (newPo) ;}199 }201 f o r ( i n t i = 0 ; i < t e r r a i n . l e n g t h ; i++) {f o r ( i n t j = 0 ; j < t e r r a i n [ 0 ℄ . l e n g t h ; j++) {203 System . out . p r i n t l n ( t e r r a i n [ i ℄ [ j ℄ ) ;i f ( t e r r a i n [ i ℄ [ j ℄ > 99) {205 t e r r a i n [ i ℄ [ j ℄ = SokobanMap2 .GROUND;r e s u l t . add (new PathPosi t ion ( i , j ) ) ;207 }}209 }re turn r e s u l t ;211 }
∗/213215 publi ArrayList<Position> findPath ( Position targetPosition ) {217 //System . out . p r i n t l n (" Finding path to : " + t a r g e tP o s i t i o n+" from man ←֓: "+man) ;PathPosition startPosition = new PathPosition ( man . x , man . y ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 55



AI00 - Sokoban Solver A.2. Java ode219 startPosition . setOriginPosition ( null ) ; // t h i s i s t he s t a r t , t he re ←֓i s no parentint pathLength = 100 ;221 terrain [ man . x ℄ [ man . y ℄= 100 ;pathLength++;223 PriorityQueue<PathPosition> openPositions = new PriorityQueue< ←֓PathPosition>() ;ArrayList<Position> path = new ArrayList<Position >() ;225 openPositions . add ( startPosition ) ;227 while ( openPositions . size ( )> 0) {PathPosition urrentPosition = openPositions . poll ( ) ;229 pathLength = terrain [ urrentPosition . x ℄ [ urrentPosition . y ℄ ;231 i f ( urrentPosition . x==targetPosition . x && urrentPosition . y== ←֓targetPosition . y ) {for ( int i = 0 ; i < terrain . length ; i++) {233 for ( int j = 0 ; j < terrain [ 0 ℄ . length ; j++) {i f ( terrain [ i ℄ [ j ℄ > 99) {235 terrain [ i ℄ [ j ℄= SokobanMapStatis . GROUND ;}237 }}239 path . add ( ( Position ) urrentPosition ) ;241 while ( urrentPosition . orgPosition != null ) {urrentPosition = urrentPosition . orgPosition ;243 path . add ( ( Position ) urrentPosition ) ;}245 //System . out . p r i n t l n ( path ) ;247 return path ;}249251 i f ( terrain [ urrentPosition . x−1 ℄ [ urrentPosition . y ℄ == ←֓SokobanMapStatis . GROUND ) {PathPosition newPo = new PathPosition ( urrentPosition . x−1, ←֓urrentPosition . y ) ;253 newPo . setOriginPosition ( urrentPosition ) ;terrain [ urrentPosition . x−1 ℄ [ urrentPosition . y ℄=pathLength+1;255 openPositions . add ( newPo ) ;}257 i f ( terrain [ urrentPosition . x+1℄ [ urrentPosition . y ℄ == ←֓SokobanMapStatis . GROUND ) {PathPosition newPo = new PathPosition ( urrentPosition . x+1, ←֓urrentPosition . y ) ;259 newPo . setOriginPosition ( urrentPosition ) ;terrain [ urrentPosition . x+1℄ [ urrentPosition . y ℄=pathLength+1;261 openPositions . add ( newPo ) ;}263 i f ( terrain [ urrentPosition . x ℄ [ urrentPosition . y−1℄ == ←֓SokobanMapStatis . GROUND ) {PathPosition newPo = new PathPosition ( urrentPosition . x , ←֓urrentPosition . y−1) ;265 newPo . setOriginPosition ( urrentPosition ) ;terrain [ urrentPosition . x ℄ [ urrentPosition . y−1℄=pathLength+1;267 openPositions . add ( newPo ) ;}Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 56



AI00 - Sokoban Solver A.2. Java ode269 i f ( terrain [ urrentPosition . x ℄ [ urrentPosition . y+1℄ == ←֓SokobanMapStatis . GROUND ) {PathPosition newPo = new PathPosition ( urrentPosition . x , ←֓urrentPosition . y+1) ;271 newPo . setOriginPosition ( urrentPosition ) ;terrain [ urrentPosition . x ℄ [ urrentPosition . y+1℄= pathLength+1;273 openPositions . add ( newPo ) ;}275 }277 for ( int i = 0 ; i < terrain . length ; i++) {for ( int j = 0 ; j < terrain [ 0 ℄ . length ; j++) {279 i f ( terrain [ i ℄ [ j ℄ > 99) {terrain [ i ℄ [ j ℄ = SokobanMapStatis . GROUND ;281 }}283 }return null ;285 }287289 publi boolean isReahable ( Position position ) {291 PathPosition orgPos = new PathPosition ( man . x , man . y ) ;orgPos . setOriginPosition ( orgPos ) ;293 int pathLength = 100 ;terrain [ man . x ℄ [ man . y ℄= 100 ;295 pathLength++;PriorityQueue<PathPosition> openPositions = new PriorityQueue< ←֓PathPosition>() ;297 openPositions . add ( orgPos ) ;299 while ( openPositions . size ( ) >0){PathPosition pos = openPositions . poll ( ) ;301 pathLength = terrain [ pos . x ℄ [ pos . y ℄ ;i f ( pos . x==position . x && pos . y==position . y ) {303 for ( int i = 0 ; i < terrain . length ; i++) {for ( int j = 0 ; j < terrain [ 0 ℄ . length ; j++) {305 i f ( terrain [ i ℄ [ j ℄ > 99) {terrain [ i ℄ [ j ℄= SokobanMapStatis . GROUND ;307 }}309 }return true ;311 }i f ( terrain [ pos . x−1 ℄ [ pos . y ℄ == SokobanMapStatis . GROUND ) {313 PathPosition newPo = new PathPosition ( pos . x−1,pos . y ) ;newPo . setOriginPosition ( orgPos ) ;315 terrain [ pos . x−1 ℄ [ pos . y ℄=pathLength+1;openPositions . add ( newPo ) ;317 }i f ( terrain [ pos . x+1℄ [ pos . y ℄ == SokobanMapStatis . GROUND ) {319 PathPosition newPo = new PathPosition ( pos . x+1,pos . y ) ;newPo . setOriginPosition ( orgPos ) ;321 terrain [ pos . x+1℄ [ pos . y ℄=pathLength+1;openPositions . add ( newPo ) ;323 }i f ( terrain [ pos . x ℄ [ pos . y−1℄ == SokobanMapStatis . GROUND ) {Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 57



AI00 - Sokoban Solver A.2. Java ode325 PathPosition newPo = new PathPosition ( pos . x , pos . y−1) ;newPo . setOriginPosition ( orgPos ) ;327 terrain [ pos . x ℄ [ pos . y−1℄=pathLength+1;openPositions . add ( newPo ) ;329 }i f ( terrain [ pos . x ℄ [ pos . y+1℄ == SokobanMapStatis . GROUND ) {331 PathPosition newPo = new PathPosition ( pos . x , pos . y+1) ;newPo . setOriginPosition ( orgPos ) ;333 terrain [ pos . x ℄ [ pos . y+1℄= pathLength+1;openPositions . add ( newPo ) ;335 }}337 for ( int i = 0 ; i < terrain . length ; i++) {339 for ( int j = 0 ; j < terrain [ 0 ℄ . length ; j++) {i f ( terrain [ i ℄ [ j ℄ > 99) {341 terrain [ i ℄ [ j ℄ = SokobanMapStatis . GROUND ;}343 }}345 return fa l se ;}347349 publi void showPath ( List<Position> positions ) {for ( Position position : positions ) {351 System . out . println ( position ) ;}353 }355 publi void testIsReahable ( Position p ) {System . out . println (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ " ) ;357 System . out . println (" I n i t i a l p o s i t i o n o f robot i s : " + new Position ( ←֓man . x , man . y ) ) ;System . out . println ("The robot t r i e s to move to p o s i t i o n : " + p ) ;359 System . out . println (" I s t h i s p o s s i b l e ? " + this . isReahable ( p ) ) ;}361 publi void testFindPath ( Position p ) {363 System . out . println (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ " ) ;System . out . println (" I n i t i a l p o s i t i o n o f robot i s : " + new Position ( ←֓man . x , man . y ) ) ;365 System . out . println ("The robot t r i e s to move to p o s i t i o n : " + p ) ;System . out . println ("The path f o r t h i s i s : " ) ;367 System . out . println ( this . findPath (p ) ) ;System . out . println (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ " ) ;369 }371 publi void testPriorityQueue ( ) {PriorityQueue<Position> t1 = new PriorityQueue<Position >() ;373 PriorityQueue<Position> t2 = new PriorityQueue<Position >() ;PriorityQueue<Position> t3 = new PriorityQueue<Position >() ;375 PriorityQueue<Position> pqueue = new PriorityQueue<Position >() ;t1 . add (new Position (1 , 1 ) ) ;377 t1 . add (new Position (2 , 2 ) ) ;t1 . add (new Position (3 , 3 ) ) ;379 t2 . add (new Position (4 , 4 ) ) ;t2 . add (new Position (5 , 5 ) ) ;381 t2 . add (new Position (6 , 6 ) ) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 58



AI00 - Sokoban Solver A.2. Java odepqueue . addAll ( t1 ) ;383 pqueue . addAll ( t2 ) ;pqueue . addAll ( t3 ) ;385 System . out . println ( pqueue ) ;}387389 publi stati void main ( String [ ℄ args ) {391 SokobanMapReader mr = new SokobanMapReader ( "maps/ testmap1 . txt " ) ;mr . reateMap ( ) ;393 mr . printFile ( ) ;// boo lean do t e s t = f a l s e ;395 boolean dotest = true ;i f ( dotest ) {397 // mr . t e s t I sReahab l e (new Pos i t i on (8 ,1) ) ;mr . testFindPath (new Position (1 , 1 ) ) ;399 // mr . t e s tPr io r i t yQueue ( ) ;}401 }}
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