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Chapter 1

Introduction

1.1 The Objective

The objective is to navigate a course for a Sokoban game. A robot will be required to effectuate
a solution to a given problem. The solution to the problem will be calculated offline, and the
robot must then function as a means to translate the solution into the real world.

A complete model of the course is known in advance, and a plan for a solution is calculated
on a computer separate from the robot, and transferred to the robot as a series of commands.

This document describes the implementation of a system to solve this problem.

The real Sokoban course is a grid of black tape on a white background, the points where
two tape lines meet, the intersection, corresponds to a field in the model. The model does not
contain any data about the distance between points, nor does it contain data on irregularities in
the playing field etc. The robot must therefor compensate for these on its own.

1.1.1 The Competition

All groups taking the AIOO course must participate in a competition, where the objective is to
solve the real world puzzle in the shortest amount of time.

1.2 This Report

This report consist of two major parts.

Part One: The first part describes the robot used to solve the puzzle. This part is mostly the
report that was delivered as a preliminary report, but modified in accordance with received
feedback.

Part two: The second part consist mainly of the offline path planning. Also there is a part
describing the modifications made to the robot in response to problems revealed by running
the actual solution on the competition course, rather than the test course.

All relevant source code is placed in a separate appendix section.
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Chapter 1

Description of the Robot

1.1 Requirements

From a cursory inspection of the problem it is evident that the following components is needed:
Sensors In order to navigate the course some kind of input from the physical world is required.
Actuators In order for the robot to solve the problem it needs some way to affect the world.

Stable frame In order to use the sensors and actuators in a meaningful manner, knowledge
about their position relative to the rest of the robot is needed. Also there must be some
kind of guarantee that they will not move significantly from this known position. This
means that the frame/chassis must be a stable construct.

A "brain" Some way to evaluate the sensor input, and activate the actuators is needed.
The design must be able to achieve the following three goals:
e Navigating the field.
e Moving a "diamond"
e Placing a "diamond"

It is not necessary to lift a diamond, and it is not legal to turn while moving a diamond. It is
however legal to pull the diamond back if it is done in order to place it accurately.

1.2 Implementation choices

The robot is build from LEGO Mindstorm, which means that a lot of factors are predetermined.
The actuators will be the LEGO rotational motors. The "brain" will obviously be the LEGO
NXT block. As this has three output and four inputs, the number of sensors and actuators is
limited. Also physical dimensions of the blocks and weight must be taken into consideration.

1.2.1 Navigation

The playing field is marked in black and white, and it can be assumed that a full model is known
to the program that plans the movements. Further we assume that we will not have to deal
with unknown obstacles, such as other vehicles. In this case only sensors that detect the black
line that is to be followed is really necessary. It was determined that two light sensors placed
close to each other, and at a distance from the turning point would be sufficient to detect if the
robot follows the line. Additionally the sensors will provide enough information to correct the
direction of the robot as needed.



AI00 - Sokoban Solver 1.2. Implementation choices

LEGO Mindstorm come with building instructions to a number of designs. Most of these use
the same basic chassis. As this chassis is a very stable design, we chose to use this as the basis
for the frame.

The design uses three motors as a integral part of the design. Two for driving and turning,
and one for other purposes. We only need the two, but have kept the third as it adds stability
to the chassis.

Figure 1.1: Chosen chassis

Figure 1.1 is a CAD drawing showing the robot as it is currently implemented. The boom in
front pushes the “diamond” between fields. The sensors behind the boom are used for following
the black lines, and detecting intersections. The front most sensor is used to detect intersections
while pushing “diamonds”, in order to ensure that the “diamonds” are placed exactly on the
intersection.

The two wheels are used to both drive and steer the robot, with a single Bogey wheel for
balancing the tail. Each wheel is driven by separate motors, allowing for a very sharp turning
radius.

1.2.2 Sensor Placement

The two front sensors are placed centrally on the robots front end, at a specific distance from the
robot’s turning axis, as shown in figure 1.2. The two front sensors are placed as close as possible
to each other, while still being placed on each side of the black line that the robot follows.

The position of the sensors are important. If they get to far from the robot’s turning axis,
there is a danger that both sensors will get on the same side of the line before the direction can
be corrected. This happens because the turning speed of the sensors, if placed to far from the
robot’s turning axis, gets to fast for the sensor sampling rate, and thus the robot cannot react
in time. This results in the robot straying from the path, which is an unrecoverable error.

If they get too close to the robot’s turning axis, the robot might already have turned a
substantial number of degrees, before the turn is detected by the sensors. This results in a
“zig-zag’ movement of the robot, which significantly slow-down as a consequence.

Brian Horn, Bjgrn Grgnbak & Jon Kjeersgaard 6
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Figure 1.2: Sensors placement

1.3 Modifications

The final implementation of the robot, is the result of a iterative process, in which the robot was
subjected to a series of tests, interspersed with redesigns.

The physical design of the robot changed as a result of both physical requirements of the
game, as well as modifications to the behaviours. For example it became evident that the initial
design had a turn circle that was too wide, and as a result the front end, where the sensors are
mounted, was shortened. This gave a much smaller turn circle.

When placing the sensors on the robot it was important to keep in mind, that if the sensors
came too close to the axis around which the robot turns, it would no longer be able to drive in a
straight line. Therefor it became a matter of iteratively changing the placement of the sensors,
in order to maximise the line following ability, while at the same time keeping the turn circle
small enough.

Similarly it was detected that the initial design had no way of stopping the robot when the
“diamond” was exactly on the intersection. This was solved by adding the front sensor. This
sensor is only used when pushing a “diamond”.

Brian Horn, Bjgrn Grgnbak & Jon Kjeersgaard 7



Chapter 2

Robot Behaviour

The behaviour of the robot can generally be separated into three parts, which combined controls
the robot in its entirety. The three behaviours are basically:

e path following
e rotation
e decision making

The behaviours are discussed in detail in the next section.
The behaviours are implemented as a mix of tasks and functions, and complex behaviours are
generally made up as a combination of more primitive behaviours, to ease the implementation.

2.1 Behavioural Analysis and Design

To design the robots software routines, an analysis of the needed behaviours were performed.

The primary and very basic behaviour needed, is following the paths/lines on the Sokoban
field. This means following a path from one field, to another field.

The obvious behaviours needed are: Forward, Right turn, Left turn and Reverse. Fur-
ther analysis of the robots behaviour and the playing field revealed the need for some additional
behaviours: Forward with diamond and Turn 180. The behaviours are summarised and
described in table 2.1.

All behaviours are based on the specific sokoban board used in this project. This means
that behaviours are based around the black lines on the board, and most importantly: the
intersections between the black lines.

No name description
1 Forward Follow a line until the next intersection is reached.
2 Reverse Reverse along a line until the next intersection is reached.
3 Turn Left Rotate left until the left line of the intersection is reached,
and then go forward (1).
4 Turn Right Rotate right until the right line of the intersection is

reached, and then go forward (1).

5 | Forward with diamond | Like Forward (1), except that the robot must stop when
the diamond is on the intersection.

6 Rotate 180 Like performing two Right turns (4) in a row, except that
the first turn must not be followed by a Forward

Table 2.1: Behaviours for the Sokoban robot
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The robot uses the sensors to detect when the robot is placed exactly on top of an intersection.
Only on intersections will new behaviours be performed. If for example the robot is performing
the Forward behaviour, it will keep doing that, until it detects an intersection.

All behaviours will automatically take the robot from one intersection and to the next inter-
section. When the robot is placed on an intersection, and starts the Turn left behaviour, it will
rotate 90 degrees left, and the automatically proceed forward to the next intersection.

2.2 Behavioural Implementation

The software for the robot is written in the Not eXactly C (NXC) programming language using
the BricxCC IDE. The most important fact to remember when discussing the software design
and implementation, is that NXC allows multi-tasking to take place. This means that all the
task sections of the code, are run in parallel.

As stated, the complete behavioural system of the robot, is composed of several sub-systems
responsible for a limited functionality. The complete systems consists of several tasks all running
simultaneously and continuously, and a number of functions for performing limited functionality
specific to a certain situation.

2.2.1 Tasks

The system utilises three task for controlling the robot’s motion and current state. Additionally
the main task is responsible for the configuration of the various sensors, and is run prior to the
three controlling task. The three control tasks are started simultaneously and once started they
cannot be interrupted. To allow for a task to be temporally stopped and later restarted, a double
while construct, as shown below, is utilised:

task SomeTask (){
while (true){ //run always
while(somevariable ){ //only run when somevariable is true
// ... some code here

}
}
}

By setting the inner variable true or false, the running can be disabled or enabled as needed.

Motion control tasks The two motion control tasks are the most important tasks in the
system, and are the basis upon which all other motion is based. Each task is responsible for
controlling the speed of one of the robots two motors. As long as the sensor, placed on the same
side as the controlled motor, is observing a white surface the motor is kept running. If the sensor
observes a black surface, indicating the sensor is now over a black line, the controlled motor
stops. The basic functionality is illustrated in the following code:

task MotionTaskRight (){
while(true){ //run always
while(right_motor){ //only run when true
if (right_sensor > RIGHT_SENSOR_THRESHOLD) OnFwd(RIGHT_MOTOR);
else 0ff (RIGHT_MOTOR);

}
}
}

Due to the placement of the sensors, relative to the turn-point of the robot, this keeps the
robot aligned with a sensor on each side of the black line, when moving forwards. When an
intersection is reached, both sensors will observe a black surface, and the robot will stop.

Brian Horn, Bjgrn Grgnbak & Jon Kjeersgaard 9
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No name description
RunStraight Move the robot forward.
RunRight Turn 90 degrees right.
RunLeft Turn 90 degrees left.
RunRightRight | Rotate right 180 degrees.
RunLeftLeft Rotate left 180 degrees.

Y | W N~

Table 2.2: Main behavioural functions for the Sokoban robot

State control task The state control task continuously evaluates the input from the three
light sensors on the robot. When the two sensors in front of the wheels both report black, the
robot has reached an intersection. When this happens a list of commands is queried for the
next command to be performed, e.g. go forward, turn left, etc. The principle is shown in the
pseudo-code below:

task ControlTask (){
while (true){ //run always
if (both sensors show black)({
cmd = getNxtCmd () ;
Switch(cmd){
case FORWARD:
//some code here
case LEFT:
}
}
}

The state control task first ensures that the motion tasks are disabled (the motors are already
stopped, since both sensors are over a black line), so that the motors will not start again, before
the robot is ready to perform its next command. The switch control structure then evaluates the
next command, and calls one or several functions, to get the robot to do the queued command.
Finally when the function report it is done, the state control task enables the motion control
tasks again.

2.2.2 Functions

Several functions implement specific behaviours needed in specific situation. In general the
functions are invoked by the state control task, when the robot is navigating before running
forwards again. The main functions are listed in table 2.2.

RunStraight

The RunStraight function makes the robot drive forward a specific distance. In contrast to
the motion control task, the sensor values are ignored, and the robot drive straight forward
(synchronised motors) without regard for the black lines. This is useful for moving the robot
away from an intersection, so the sensors get back on the white surface, without triggering the
state control task again.

RunLeft and RunRight

The RunRight and RunLeft functions turn the robot 90 degrees right or left respectively. To
turn the robot both motion control tasks are disabled, and the RunStraight function is called to
move the robot off the intersection manually. The right or left motor is then activated manually,
to turn the robot a fixed number of degrees (about 45 degrees). This is done to ensure that the
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sensors are now all away from the black lines. Finally the left or right motor is activated, by
enabling one or the other of the motion control task, according to the direction the robot should
turn. When the active motion control task senses a black line again, e.g. that it has turned 90
degrees, the other motion control task is activated, and the robot drives forward along the line
again.

RunLeftLeft and RunRightRight

The RunRightRight and RunLeftLeft functions are, as the names apply, continuation of the
RunRight and RunLeft functions, just rotating the robot 180 degrees instead. Basically they
are identical to the 90 degrees version, except that they repeat the turning-part of the function
twice, before driving forward again.

2.3 Sensor Adjustment

The sensors are used in a mode that gives a percentage value. A lower value means that the
sensor reads less light, in this case the black line. Likewise a high value means that the sensor
reads the white board. Under different lighting conditions the precise threshold value between a
black and a white reading differ somewhat. However the behaviours are made sufficiently robust
that a exact value are not required. Experiments have shovn that a threshhold of 50% is almost
always good enough.

Brian Horn, Bjgrn Grgnbak & Jon Kjaersgaard 11



Chapter 3

Performance Test

The following section contains a description of the various test scenarios of the robot. These tests
should not be seen as the final evaluation of the robot, but rather as preliminary experiments of
the morphology and physical design of the robot. We have performed a series of tests, where the
purpose of each test is to reveal potentially weak design decisions, primarily with provide us with
enough knowledge to be in a position to correct these potentially bad design choices successfully.
Moreover, the tests should bring useful information regarding the correct adjustment of the
different parameters; like optimal power values of the motors, sensitivity of the light sensors, etc.

The overall goal of the project is that the robot should be able to play the Sokoban game.
However, before considering strategies and algorithms to solve this task, we have taken a bottom
up approach; meaning that we have implemented basic motion behaviours like the ability to
follow a line and performing turns when necessary. The test base for these experiments is shown
in figure 3.1. The physical model of the field for playing Sokoban is a white square, with an
area of approximately 1.5 m?. The valid pushing paths are indicated by black tape, forming a
grid-like pattern as in figure 3.1.

Figure 3.2 shows a magnified outline of the grid from 3.1. The black dot represents a can,
which is the object the robot must push around the grid path. In the real Sokoban game the
objects are diamonds - here cans resemble diamonds.

3.1 Test 1

In this test, the robot tracks a path formed by two squares, where the perimeter of one square
touches, without intersecting, the perimeter of the other square thereby forming the number
eight (in digital). By navigating this particular pattern, the robot is forced to perform both left-
and right turns. The test is performed ten times and with different power values of the motors.
The result of the test is shown in table 3.1

Test | Speed | Rounds | Completed | Error % | Average lap time [s| | Remark

1 60 10 10 0 32 None

1 70 10 10 0 29 None

1 80 10 10 0 27.9 None

1 90 10 1.5 15 30.6 Fails in turn

Table 3.1: Result of test 1.
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3.2. Test 2
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Figure 3.1: The grid layout representing the environment that the robot operates in.

3.2 Test 2

In this test, the robot tracks a path between two points. A strip of black tape connects the
points. The distance between the points is approximately 45 cm. The robot starts from one
point, with the line properly placed between the two front sensors, thereby facing directly towards
the opposite point. When the robot reaches the opposite point it performs a 180-degree turn
and continues toward the staring point. This cycle is repeated ten times with different power
values of the motors. The result of the test is shown in table 3.2

Test | Speed | Rounds | Completed | Error % | Average lap time [s| | Remark

2 60 10 10 0 14.6 None

2 70 10 5 50 134 Fails after turn
2 80 10 1.5 15 16.6 Fails in turn

Table 3.2: Result of test 2.

Brian Horn, Bjgrn Grgnbak & Jon Kjaersgaard
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Figure 3.2: Close view of the field in which the robot operates.

3.3 Conclusion

By observing the performed tests, and specifically their point of failure, several additions to,
and fine-tuning of, the robot’s behaviours were done. The most important is the introduction of
variable power setting for the motors, based on the previous command. This for example enables
the robot to set the Forward speed setting, to a lower value after performing a 180 degrees turn,
where it potentially has a problem finding the black line again.

Table 3.3 shows the optimal speed setting derived from the performance tests, for several
behaviours. With the adjusted speed settings, the robot is able to perform ten runs in every
test, with 100% success rate.

Situation Speed | Description
Forward 80% | When running directly forward between intersections.
Turn left / right 70& | This is the maximum reliable speed when turning 90 de-
grees.
Rotate 180 degrees 60% | Maximum reliable speed when turning 180 degrees.
Forward after 180 rotation | 60% | This is the maximum speed, where the robot is able to
determine a line after 180 rotation, 100% reliable.

Table 3.3: Variable speed settings.

Brian Horn, Bjgrn Grgnbak & Jon Kjaersgaard 14
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Figure 3.3: Field layout for test 1.
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Figure 3.4: Field layout for test 2.
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Chapter 1

A* In General

1.1 Pathfinding

This section describes the A* algorithm in general and is therefore not concentrated at pathfind-
ing in Sokoban in particular, but rather on pathfinding in a broader sense. Later the modifications
used to adapt A* to solve Sokoban are described, in the design section of this report.

The planning of the path that the robot must follow is calculated offline, meaning that
the path is found in advance and not determined dynamically as the robot moves along. The
pathfinder will define a path through a virtual world to solve a given set of constraints. Often
the constraints is to find the shortest path from the current position of the agent to a specified
target position. Pathfinding systems typically use pre-procecessed representations of the virtual
world as their search space. The common scenario when pathfinding in computer games, is that
the representation of the virtual world is made in form of a map.

1.2 Approaches to Pathfinding

There are many different approaches to pathfinding, but overall pathfinding can be divided into
categories; undirected and directed. These approaches are briefly described in the following
sections.

1.2.1 Undirected

This approach is analogous to a rat in a maze running around blindly trying to find a way out.
The rat spends no time planning a way out and puts all its energy into moving around. Thus
the rat might never find a way out and uses most of the time going down dead ends. Thus, a
design based completely on this concept would not be useful in creating believable behaviour for
an Al agent.

There are two main undirected approaches that improve efficiency. These are Breadth-first
search and Depth-first respectively. Breadth-first search treats the virtual world as a large
connected graph of nodes. It expands all nodes that are connected to the current node and then
in turn expands all the nodes connected to these new nodes. Therefore if there is a path, breadth-
first will find it. In addition if there are several paths it will return the shallowest solution first.
The depth-first approach is opposite of breadth-first searching in that it looks at all the children
of each node before it looks at the rest, thus creating a linear path to the goal. Only when the
search hits a dead end does it go back and expand nodes at shallower levels. For problems that
have many solutions the depth-first method is usually better as it has a good chance of finding
a solution after exploring only a small portion of the search space.

18
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1.2.2 Directed

Directed approaches to pathfinding all have one thing in common, that they do not go blindly
through the maze. This means that using a directed strategy ensures a method of assessing the
progress from all adjacent nodes before picking one of them. This is referred to as assessing
the cost of getting to the adjacent node. Typically the cost in game maps is measured by the
distance between the nodes. Most of the algorithms used will find a solution to the problem but
not always the most efficient solution - that is the shortest path. The main strategies for directed
pathfinding algorithms are:

e Uniform cost search g(n) modifies the search to always choose the lowest cost next
node. This minimises the cost of the path so far, it is optimale and complete, but can be
very inefficient.

e Heuristic search h(n) estimates the cost from the next node to the goal. This cuts the
search cost considerably but it is neither optimal nor complete.

The two most commonly used algorithms for directed pathfinding in computer games; Dijk-
stra’s algorithm and the A* algorithm use one or more of these strategies. Dijkstra’s algorithm
uses the uniform cost strategy to find the optimal path while the A* algorithm combines both
strategies thereby minimizing the total path cost. Thus A* returns an optimal path and is
generally much more efficient than Dijkstra’s algorithm making it the backbone behind most
pathfinding designs in computer games. Therefore we have chosen A* as the primary tool in the
implementation for solving the Sokoban problem.

1.3 A* Pathfinding Algorithm

A*is a directed algorithm, meaning that is does not blindly search for a path - like a rat in a maze.
Instead it assesses the best direction to explore, sometimes backtracking to try alternatives. This
means that A* will not only find a path between two points, if a path exists, but it will find the
shortest path if one exists and do so relatively fast.

To use A* in computer games, the game map has to be pre-processed before the A*-algorithm
can work. This involves breaking the map into different points or locations, which are called
nodes. These nodes are used to record the progress of the search. In addition of holding the map
location each node has three other attributes. These are fitness, goal, and heuristic commonly
known as f, g, and h respectively. Different values can be assigned to paths between the nodes.
Typically these values would represent the distances between the nodes. The attributes g, h,
and f are defined as follows:

e g is the cost of getting from the start node to the current node i.e. the sum of all the values
in the path between the start and the current node.

e h stands for heuristic which is an estimated cost from the current node to the goal node -
usually the straight line distance from this node to the goal.

e fis the sum of g and h and is the best estimate of the cost of the path going through the
current node. In essence the lower value of f the more efficient the path.

The purpose of f, g, and h is to quantify how promising a path is up to the present node.
Additionally A* maintains two lists, an Open and a Closed list. The Open list contains all the
nodes in the map that have not been fully explored yet, whereas the Closed list consists of all
the nodes that have been fully explored. A node is considered fully explored when the algorithm
has looked at every node linked to it. Nodes therefore simply mark the state and progress of the
search. Pseudocode for the general A* algorithm is given in algorithm 1.

The pseudocode outlined in algorithm 1 is the pathfinding method used in most computer
games. Its simply tries to find af path from a given starting point to a specified target. Due to
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Algorithm 1: A* pathfinding - normal version

Pre-conditions:

Both Open and Closed lists are empty.

Variables B and P are nodes.

Variables f, g, and h represents fitness, goal, and heuristic respectively.

W N =

5 Let P = starting point
6 Assign f, g, and h values to P.
7 Add P to the Open list. At this point P is the only node in the Open list.
8 while Open list is not empty do
9 Let B = the best node from the Open list (i.e. the node that has the lowest f-value).
10 if B is the goal node then
11 | Quit - a path has been found.
12 end
13 else
14 Move the current node to the closed list and consider all of its neighbors.
15 for Each neighbor do
16 if This neighbor is in the closed list and the current g value is lower then
17 Update the neighbor with the new, lower, g value.
18 Change the neighbor’s parent to the current node.
19 end
20 if This neighbor is in the Open list and the current g value is lower then
21 Update the neighbor with the new, lower, g value.
22 Change the neighbor’s parent to the current node.
23 end
24 else
25 | Add the neighbor to the open list and set its g value.
26 end
27 end
28 end
29 end

the rules of Sokoban the general implementation of A* is not sufficient to solve the pathfinding
problem. There are various reasons for this. One of them is is described in the following.
The problem of solving the Sokoban puzzle can be broken down in two subproblems. The first
subproblem is finding the best path from the current position of the man to a given diamond.
The second subproblem is finding the best path that the man, while pushing the diamond, must
follow to place the diamond onto a goal area.

At first the two problems seems to be similar, but due to the rules of Sokoban they are not.
The difference is that the man, while not pushing a diamond, is allowed to move up, down,
left, and right under the assumption that he is not moving through any obstacles by doing so.
At the point when the man has reached a diamond, his maneuverability becomes more limited,
because the man is only allowed to push the diamond. To overcome these problems we have
made different modifications to the general A* algorithm. These modifications are described in
section 2.1.
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Chapter 2

Design and Implementation
Strategies

When deciding on an implementation strategy, several factors in the design of the game was
considered. First of all, there is really two elements in the game, that needs to be controlled.
First there is the robot, and secondly the diamonds.

The diamonds are of course the whole basis for evaluating the puzzle, since the final goal is to
move the diamonds from their starting positions, and to the goal fields. But on the other hand,
it is the movements of the robot that is important in this project. Both in terms of that it is the
robot we control, and also considering the fact that the robot should move in an optimal way.

After some deliberation and several design and test implementations, a general algorithm for
solving the puzzle was agreed upon. The design separates the solving of the puzzle into two main
areas:

1. finding the optimal route the diamonds should be moved
2. finding the optimal route the robot must follow, to ensure the first requirement.

The two requirements are co-dependant, since the optimal route for a diamond is of course
dependant on where the robot is positioned, and where the robot can move to. And the the
robot’s route is dependant on the diamonds positions, since this dictates where the robot can
move.

2.1 Design: Moving the Diamonds

The general strategy for finding a optimal route for the diamonds involves using a tree data
structure for storing different states of the map, including the diamonds and the robot’s position.
For each node in the tree a complete “situation” is stored, and all possible next states are found.
These are stored as children of the current node, and then processed later. Each node in the
tree is visited in a search, until a solution is found. In addition to the tree, a list of situations
already visited /investigated is kept, so that traversing identical sub-trees is avoided.

A “situation” is the data stored in a node. This includes the positions of all the diamonds,
the robot, the cost of the node and the parent of the node. When a node is processed a Sokoban
puzzle is populated with the information from the node. What this practically means, is that
each node contains a complete Sokoban map with diamonds, goals, walls, the robot etc. This is
used when finding new nodes to add as children. Looking at the map for the current node being
processed, all possible derivatives for the map is found. In theory this means four new nodes
for each diamond, since each diamond can be moved in four directions, but practically there
are fewer nodes since some of the diamonds moves will be blocked by walls or other diamonds.
Additionally the robot needs to have a clear path to the position behind the diamond, so that
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the diamond can be pushed. For each of the new valid moves a new node is created and the
diamond is moved to that new position. This means that a parent node has a number of children
nodes, and each of these nodes have almost identical maps, except that in each map one of the
diamonds are moved to one of its possible new positions, relative to the map in the parent node.
Additionally the cost and the position of the robot is also updated to reflect the diamonds new
positions.

2.1.1 Sokoban Solver: Main

The strategy for traversing the tree and adding new children is shown as pseudo-code in algorithm
2 Lines one to three is the precondition, and on line four the main construct of the solver is

Algorithm 2: Main section of the Sokoban Solver class

1 SET initialnode.map to initialmap

2 SET initialnode.parrent = null

3 ADD initialnode to opennodes

4 while opennodes not empty do

5 SET currentnode to first node in opennodes

6 REMOVE first node from opennodes

7 if currentnode.map is the_ solution then

8 | DO return the_solution

9 end

10 for each diamond in currentnode.map do

11 SET newValidPositions to CALL findNew ValidPositionsForTheDiamond (diamond)
12 for each newValidPosition in newValidPositions do
13 SET tempmap = currentnode.map

14 CALL moveDiamond(tempmap, new ValidPosition)
15 SET tempnode.map = tempmap

16 SET tempnode.parent = currentnode

17 ADD tempnode to opennodes

18 end

19 end

20 end

started. This while runs until either a solution is found, which is checked on line seven, or there
is no more open nodes. If no solution if found, and there is no more open nodes, the puzzle has
no solution that can be found by this algorithm.

Apart from the while loop the solver utilises two extra functions here. On line 14 moveDiamond ()
is used to update a map with the new position of the diamond. On line 11 a call to the
findNewValidPositions () is important for the solver, since this call is responsible for detecting
new positions the diamond can be moved to. This is shown in more detail in subsection 2.1.2

In the pseudo code shown in algorithm 2 some important parts are omitted for increased
readability. The two most important parts are:

1. each node has a cost associated, and the open list is sorted accordingly

2. a list of nodes visited is stored in a closed list, and used to eliminate revisits of identical
sub trees.

The cost of each node is calculated as with a classic A* algorithm. This means the cost reflects
the distance travelled from the starting position, and a heuristic function calculates an additional
cost. The nodes are then sorted accordingly to the cost, so that the cheapest node is at the first
position in the open list.
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The second omission is the closed list. When ever a new node is created it’s added to a closed
ass well as the open list. Before a node is added to the open list, it is checked if there is an
identical node in the closed list. If that is the case, it is already in the open list, and there is no
need to add the node again.

2.1.2 Sokoban Solver: Finding New Positions

When finding new valid positions for a diamond, the pseudo code in figure 3 is used.  The

Algorithm 3: The findNewValidPositions pseudo code

1 for currentpostion.x - 1 to currentposition.x + 1 do

2 for currentpostion.y - 1 to currentposition.y + 1 do

3 if position not equals currentposition AND position not eqauls diagonal move then
4 if position.type equals type. GROUND then

5 robotPath = CALL getRobotPath(oppositeposition)

6 if robotPath not equals null then

7 | ADD position AND robotPath to newnode

8

9

end
end
10 end
11 end
12 end

13 return listOfNewNodes

findValidPosition() method is called with the position of a diamond as argument. Then all
positions neighbouring that position are investigated for validity. The condition on line three
eliminates the starting position, which the diamond are moving from, as well as the illegal
diagonal positions, which are by default not valid positions in a Sokoban puzzle.

The terrain of the position is then evaluate on line 4. The terrain must be valid for a diamond,
which means not a wall and not another diamond, or just basically of type ground. The robot
and the goals are all seen as type ground, since the diamond can indeed move to a field where
one of those two are placed. The next check involves the robots position and its path. On line
five it is checked if there is a path from the robot’s current position, and to the position where it
must go to push the diamond. It is important to recognise that it’s not the path from the robots
start position and to the diamond, or to the target field, but instead to the field that makes
it possible to push the diamond. If the path is null the robot cannot move to the required
“pushing position”, and this of course invalidates the move of the diamond to the investigated
position. This is checked on line six. If the robot’s move is valid, the position is reported valid
to the calling function and the path of the robots is also returned.

The reason for the path of the robot to be returned is that the path should be stored in the
new node created for this update of the tree. Later, when a solution is found, it is possible to
traverse up the tree, child to parent, and extract the path the robot has driven. This path is
the exact path the physical robot must be instructed to take, to solve the complete puzzle from
start to end.

2.1.3 Sokoban Solver: The Closed List

In a standard A* implementation the closed list is used to ensure that the path finding algorithm
does not visit the same fields over and over again. That specific situation is not comparable to
the Sokoban solver, which does not enforce a demand that a specific position can only evaluated
once. Instead the Sokoban solver enforces that identical situations, where the exact position of
the diamonds and the robot, is only investigated for possible derivative situations once.
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Whenever a node is investigated for possible sub-nodes / children, all possible valid positions
for the diamonds in the map are found. This can be used as an identifier for this particular
situation. Say, if the robot after several moves, has completely switched the positions of two
of the diamonds, and is still only capable of pushing the diamonds to the same positions as
in the start situation. Then, the start and end situations are identical, and there is no reason
to investigate the end situation for further derivatives. Instead, the path finder should return
one situation up the tree, to the current situations parent node, and investigate that node for
additional derivative situations.

2.1.4 Sokoban Solver: Cost Functions

The cost functions are used when calculating which cost a certain situation should have, and
there by direct the search algorithm to hopefully take an appropriate route down the tree.

Two costs are used in our A* implementation. First the general cost of moving a diamond
from field to field. This cost is always the SokobanSolver class, since moving a diamond from
one field to another, always amount to the same work. There is only one type of terrain, if the
invalid fields like diamonds and walls are disregarded.

The heuristic cost function in the solver is used to ensure that the diamonds in general move
towards the goals. In this implementation this amounts to a function calculating the distance
from each diamond and to the closest goal for that diamond. This ensures that the diamonds
in general are moved towards the fields, and not away. This heuristic is enough to solve the
Sokoban puzzle if only considering the diamonds.

An additional point of interest in Sokoban, and in this problem in particular, is the movement
of the robot. To increase the effectiveness of the robot, an additional heuristic cost is added to a
node, which calculates the distance between the robot and the nearest diamond. This is used to
make the robot “prefer” pushing one diamond as long as possible, rather than changing back and
forth between the diamonds that brings the whole puzzle closer to the solution. If this heuristic
is not used, the robot will always push the diamond that is nearest to the final solution, possibly
making robot move a diamond one field, then go to another diamond and move that diamond
one field, and finally back to the first diamond. The most optimal is of course to move the first
diamond two pushes, and then move to second diamond.
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Chapter 3

Implementation of Sokoban Solver

The main part of the solver implementation is located in the SokobanSolver class, with some
utility classes providing additional functionality. One exception is the SokobanMapReader class
which both provides functions for reading a puzzle map from a file, and keeping it updated, but
all contains the critical code for finding paths for the robot.

3.1 The SokobanSolver class

The design of the Sokoban solver is discussed in section 2, and gives a general overview of
the functionality of the solver. In the next sections only technically and fuctionally important
sections of the implementation are described. The complete code for the SokobanSolver class are
found in the appendix.

3.1.1 The Open List

The A* algorithm used when solving the puzzle, dictates the use of a list for storing all the
position, or in our case: maps, that needs to be investigated. The list should be sorted by cost,
so that the cheapest position or node is at the first position.

In this implementation, where the open list contains nodes in our tree, it’s the total cost of
that node, that dictates its position in the list. The cost of a node is calculate with the cost
functions discussed in subsection 2.1.4. Each node in the tree is an object of the type Node, and
the class Node implements a compare method (implements the comparable interface). The open
list is implemented as a PriorityQueue, which is a build-in Java queue, with automatic sorting.
This ensures that the cheapest node is always at the head of the queue.

3.1.2 The Closed List

In addition to the open list, which is part of the A* design, our implementation utilises a closed
list, which is described in section 2.1.3.

The closed list is implemented as a double hash map, where the other hash map contains
the diamonds positions, while the inner contains the valid positions for the diamonds at that
configuration.

To ensure correct hashing and recognition of situations where diamonds have exchanged
place, all positions are placed in a sorted list. This list makes sure that the positions it contain
are sorted in a specific way, so that if two diamonds have exchange positions, this is correctly
perceived as an identical map, as when the diamonds were at their original positions.

When a children is added to a node exactly one diamond has moved. This new list of positions
is added to the outer hash map, if it is not already added. For the new map in the child node,
all valid positions for the diamonds are then found, and added to a sorted list, in the same way
as with the diamonds.

25



AI00 - Sokoban Solver 3.2. The SokobanMapReader class

Now it is checked to see if this sorted list of valid positions, are already held in the inner hash
map. If that is the case, a exactly similar situation has already been found by an earlier search,
and there is no reason to create new children in the tree for these positions. The path finder can
close this sub-tree, and go back to the parent node, and try another child. If the list is not found
in the inner hash map, it is added and new sub nodes are created for each of the valid positions.

3.2 The SokobanMapReader class

The SokobanMapReader class implements a parser using a buffered reader and the Scanner class
to read and parse a Sokoban map in the format given in this course. It outputs a Sokoban-
MapReader object which the SokobanSolver class can use for solving the puzzle.

In addition it contains the robot path finding implementation, used when querying the robot
if there is a path from the current position and to a given position.

3.3 The SokobanSortedList class

This class is important for the functionality of the closed list implementation in the SokobanSolver
class. It is an extension to the normal ArrayList class, overriding the standard add () method with
a customised version. In the SokobanSortedList class the add method both adds the argument
given to the list, but it also proceeds to sort that list, thus ensuring a specific order of its elements.
In particular that the “smallest” positions are found first in the list, with increasing positions
following.
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Chapter 4

Robot Modifications

4.1 Testing on The Final Course

For the initial construction and testing of the robot, a generic test course was used. In order
to adapt the robot for the course on which the competition was held, a number of tests was
performed. The final course, which was used for the competition, consited of two thin melamine
wood plates. The lines that made up the course was made of the same type tape as on the test
course.

The aim was to test the same type of movements that were tested in chapter 3 on page 12.
Since the competition course was more complex, than the test course, some of the tests differed
somewhat, but the goal was the same. As described in 4.2 page 27 some modifications were made
to the robot. After these were made, the robot performed the same as on the test course, with
regard to accuracy and stability.

4.1.1 Observed Problems Prior to Modifications

As the final course consisted of two separate plates there was a intersection between the plates,
and this caused several problems as it was not completely level. When crossing the intersection,
the tin can (representing the diamond from the game) would often get caught in the tape edge
at the intersection, which made the can fall over.

The tape marking the course would also rise up in a bump causing light to be reflected in
a manner sufficiently different from the average condition, that it would cause wrong sensor
readings. In several cases the robot would suddenly leave the course, for no apparent reason.

4.1.2 Method of Problem Solving

It was often not possible to determine why an error happened, as it was often difficult to recreate
the events that led to the error. A number of tests with minor modifications to the robot were
therefor necessary, amounting to a process of trial and error.

The object was to make the robot behaviours work at least as well on the competition course
as on the test course. Also, as the robot had to participate in a timed competition, it was
important that the robot was optimised to run at the highest possible speed under the given
conditions.

4.2 Structural Modifications to the Robot.

4.2.1 Stabilising the Rig

In early tests the robot would “bob” the front end up and down when stopping after driving
fast forward. One solution was to make the robot drive slower, but that would lessen the
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chances of winning the competition. A better solution was to mechanically stop the bobbing
from happening, which achieved by placing a number of support points immediately in front of
the sensors. A positive side effect of this was that tin can stopped hanging in the tape at the
intersection of the two plates.

4.2.2 Enclosing the Sensors

Initial tests were made in a room with relatively dark lighting conditions. When testing under
other lighting conditions, it was made clear that some calibration of the sensor thresholds were
necessary. It was not possible to find thresholds that was valid under all lighting conditions.
Rather than make adaptive sensor adjustment a choice was made to control the conditions under
which the sensors operated.

This was achieved by enclosing the sensors in a shroud, that blocks exterior light sources on
three sides. On the fourth side an additional light source (LED bicycle front lamp) was placed.
This gave stable light conditions, thus alleviating the need to change sensor settings. Also, this
removed the problem of reflections from the tape at the intersection.

4.3 Modifications to Movement patterns

Modifications were required in order to make some of the movements, that were possible on the
test course, possible on the competition course. On the test course the lines were whole, that is
there were no gaps. On the competition course the lines were broken to simulate a wall in the
sokoban game. Unfortunately the lines were in many cases so short that the sensors on the robot
“missed” them when making a 180 degrees turn. This was resolved in two parts. First some of
the shortest lines were made longer on the course. Second the behaviour of the 180 degree turn
was modified. The modifications were made not to the method used for making the turn, but
rather to the constants used in the methods. This was very much a case of trial and error, before
the optimal values were found.

The other speed settings, forward, reverse and turn, were also optimised by trial and error.
The aim was to get the robot to move as fast as possible and still run the course correctly.

4.4 Test of The Pathfinder Solution

The solution returned by the path finder is not the same format as the instructions the robot
needs in order to move correctly. Additional instructions are required in order to place the cans
etc. The solution from the path finder, was converted to movement instructions via a purpose
written java program that pads the solution with the required extra instructions. This was then
inserted manually into the NXC code, before compilation.

The calculated solution was tested simply by letting the robot run the course 6 - 7 times,
and there were no errors. Simultaneously the robot was stress tested, by harassing the sensor
conditions, e.g. by flashing lights or shaking the course. This revealed several of the errors
that were addressed in the previous section. After the modifications were made, an additional 3
flawless passes were made, despite continued harassment of the sensor conditions.
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Chapter 5

Improvements of the Pathfinder

5.1 Path-finding Improvements

This section discusses possible improvements to the path finding implementation used to solve
the Sokoban puzzle. We have not implemented any of these strategies, but if the implementation
should be improved or extended further some of the following considerations might be worth
implementing.

5.2 Review Of Existing Sokoban implementations

The most notably project about Sokoban and general path finding algorithms that we have been
able to find, is the Rolling Stone program and the accompanying papers describing the evolution
of the program. The project started as an extension of a Ph.D. project in path finding and motion
planning in computer games, and later turned into research project running over a period of 3
years. The authors of Rolling Stone describes progress of the program as: "The development
effort equates to a full-time Ph.D. student, a part-time professor, one summer student, and
valuable feedback from many people."

In the following subsections a number of strategies used in the Rolling Stone program are
described. In the heading of each subsection the revision number of the program and the number
of Sokanban problems the revision was able to solve is given. The goal of the Rolling Stone
program was to solve as many problems as possible in a test suite of 90 Sokoban puzzles.

5.2.1 Minimum Matching Lower Bound (RO, 0 solved)

A* with a simple lower bound has no hope of finding a solution to any of the problems in the test
suite. An obvious lower bound is the distance of each diamond to its closest goal, a Manhattan
distance for Sokoban. However, the gap between the lower bound value and the actual solution
length for any non-trivial Sokoban problem so large that the number of A* iterations, and thus
their respective tree sizes, make solving these problems effectively impossible. By adding a lower
bound to their implementation they were still not able to solve any of problems in the test suite.

To obtain a better admissible estimate for the distance of a diamond to a goal, a minimum-
cost algorithm is used. The matching assigns each diamond to a goal and returns the total
(minimum) distance of all diamonds to their goals. The minimum cost argumentation algorithm
is O(N?), where N is the number of diamonds. During the search the lower bound only needs
to be updated, which requires finding negative-cost cycles, and is therefore less expensive to
compute. With the minimum matching lower bound strategy the program was still not able to
solve any of the maps in the test suite.
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5.2.2 Transposition Table (R1, 5 solved)

Even though the search spaces in Sokoban are generally graphs, most search algorithms treat
them as trees. If a state can have several predecessors, this can lead to duplicate work. the search
could revisit nodes and even entire sub-trees several times. These "transpositions" or cycles are
detected using a transposition table in which useful information about previously visited nodes
is stored. Before expanding a node, the transposition table is consulted, and if valid information
is found, it is used to potentially curtail the search. Adding transposition tables allowed their
program to solve 5 problems in the test suite.

5.2.3 Move Ordering (R2, 4 solved)

Instead of visiting successors of a position in an arbitrary order, one can try to look at "good"
successors first. Move (or successor) ordering is not used in the best-first searches; the algorithm
itself provides for a global ordering of the alternatives. In depth-first and breadth-first searches,
move ordering can lead to efficiency gains because goals are found earlier (left in the tree) rather
than later (right in the tree). For A*, ordering moves at interior nodes makes no difference to the
search, except for the final iteration. Since the final iteration is aborted once a solution is found,
finding a solution early in this iteration can significantly improve the performance. After adding
move ordering to their program, they were only able to solve 4 of the test problems. According
to their documentation, they categorise this as bad luck and explain that move ordering shows
up as a valuable contribution after other features are added to the program.

5.2.4 Deadlock Table (R3, 5 solved)

In Sokoban it is possible to bring the puzzle in a deadlock state - that is a stat in which the
puzzle becomes unsolvable. For instance pushing a diamond into a corner field that is not a goal
area, makes every consecutive move irrelevant, because it is impossible for the man to bring the
diamond back into the game without pulling it, which is an illegal operation in Sokoban. The
implementation of Rolling Stone uses so called deadlock tables, where an off-line search is used
to enumerate all possible diamond /wall placements in a 4z5 region to determine if a deadlock is
present. These results are stored in deadlock tables. During the A* search, the table is queried
to see if the current move leads to a local deadlock.

In the A* search, before making a move, the program queries the deadlock table to see if the
move would result in a known deadlock. If so, the move is not considered further. According to
the designers of Rolling Stone, the branching factor is reduced by 20% by using deadlock tables.
With deadlock tables the program where able to solve 5 of the test problems.

5.2.5 Tunnel Macros (R4, 6 solved)

The search algorithms discussed so far treat all moves equally. After making a move, all legal
moves are considered as successors. These algorithms are therefore treating all moves as if they
were unrelated. The method of macro moves is an attempt to group related atomic actions into
higher level composite actions: macros.

A tunnel is the part of a maze where the manoeuvrability of the man is restricted to a width
of one. Since there can be at most one diamond in a tunnel without creating an immediate
deadlock, the remaining tunnel moves can be completed without loss of generality of optimality.
If a tunnel is composed of articulation squares, the tunnel is called a one-way tunnel. Whenever
the move generator creates a move into a one-way tunnel, the move is substituted with the macro
pushing the diamond all the way through the tunnel. This eliminates all the inter-leavings with
other legal moves.

Tunnel macros result in one additional problem being solved, bringing the count at a total of
6 solved problems from the test suite.
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5.2.6 Goal Macros (R5, 17 solved)

Many of the Sokoban problems have all the goal squares grouped together in rooms. These
goal areas are usually accessible through only a few square entrances. One can decompose the
problem of solving a maze into:

e how to get each diamond to one of the entrances, and
e how to pack/arrange the diamonds into the goal areas.

Often these sub-goals can be solved independently, thus reducing the search space. This is
achieved by defining a goal area, marking its entrances, and precomputing the order in which
goal squares are filled without introducing deadlock in the goal area. During the search, if a
move is generated that pushes a diamond onto the entrance square of a goal area, that move
is replaced with a goal macro that generates a sequence of moves to push the diamond directly
to an appropriate goal square. By introducing goal macros the program was able to solve 17
problems.

5.2.7 Goal Cuts (R6, 24 solved

The goal-macro heuristic eliminates all alternatives moves from consideration when a goal macro
is present. The reason for this is that if it is possible to push diamond to its final destination,
it will not affect other moves and they can be ignored. The same reasoning can be applied
to the previous move: the move that pushed the diamond to the square from which it will be
"macro"-pushed to the goal square. Goal cuts do exactly that recursively further up the tree: if
a diamond is pushed to a goal with a goal macro at the end without interleaving other diamond
pushes, all alternatives to pushing that diamond are deleted from the move list. With goal cuts
they were able to solve 24 problems from the test suite.

5.2.8 Pattern Search (R7, 48 solved)

Pattern searches find patterns of diamonds that prove that the lower bound is in error. The
errors could be small, improving the lower bound by as little as 2, or as much as oo in the case
of a deadlock. All discovered patterns are saved and used throughout the search. If a pattern
matches a subset of diamonds in a position, then the penalty associated with that pattern is
added to the lower bound estimate for the position. In effect, the program learns lower bound
penalty patterns and uses them to dynamically improve the lower bound function.

Sokoban pattern search two different mazes are used: the original maze, the data structure
used by the A* search, and the test maze which will be used for the pattern searches. A pattern
search iterates on the number of diamonds in the test maze. By definition, a deadlock is a
configuration of diamonds such that not all of the diamonds can reach a goal. If a move A — B
is made, it might introduce a deadlock. If this deadlock was not present before the move, then
the moved diamond, now on square B, must be part of that pattern. This is the initial diamond
included into the test maze for the pattern search. A special version of A* tailored to be efficient
at pattern searching, is called to solve the test maze. It either returns in failure (no solution,
hence deadlock), or it finds a solution. In the latter case, the number of pushes in the solution
may disagree with that determined by the minimum matching lower bound introduced in revision
1. If so the lower bound function is in error and can be improved.

By introducing pattern search into Rolling Stone, the designers were able to solve 48 of the
90 problems in the test suite. Pattern search was the strategy that gave most increase in the
number of Sokoban puzzles the program was able to solve.

5.2.9 Relevance Cut (RS, 50 solved

Analysis of the trees built by an A* search quickly reveals that the search algorithm considers
move sequences that no human would ever consider. Even completely unrelated moves are
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tested in every legal combination - all in an effort to prove that there is no solution for the
current threshold. How can a program mimic an "understanding" of relevance? The designers
of Rolling Stone suggest that a reasonable approximation of relevance is influence. If two moves
do not influence each other, then it is unlikely that they are relevant to each other. If a program
had a good "sense" of influence, it could assume that in a given position all previous moves
belong to a (unknown) plan of which a continuation can only be a move that is relevant - in the
approximation, is influencing whatever was played previously. Relevance cuts eliminate moves
from the search that appear to be irrelevant to the preceding sequence of moves. With relevance
cuts implemented, Rolling Stone was able to solve 50 problems.

5.2.10 Overestimation (R9, 54 solved

To ensure optimality of solutions produced by A*-based algorithms, the heuristic has to be
admissible. This limits the choice of knowledge that can be used. Even if some knowledge
correlates well with the distance to the goal, but there is a chance that it overestimates, it cannot
be used because the solution optimality would not be guaranteed. This shows that optimality
has it price. Instead of fitting the heuristic distance to a solution h as closely as possible to the
actual distance hx, we are restricted to creating a lower bound. The error of such a lower-bound
function is often larger than a function that is allowed to occasionally overestimate. The larger
the error of the lower-bound function, the less efficient the search. With overestimation they
were able to solve 54 of the test problems.

5.2.11 Rapid Random Restart (R10, 57 solved

In the implementation of Rolling Stone a strategy called rapid random restart (RRR) is used.
RRR assumes that by varying parameters to the solution algorithm (here search), it is possible
to reduce the solution time dramatically. Therefore, instead of using all the available time with
one parameter setting, RRR repeatedly aborts the search after a given effort limit and restarts
it with different (random) parameters.

In Rolling Stone, RRR is used to interrupt an iteration and restart it with a different move
ordering scheme. With RRR 57 of the 90 problems could be solved.
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Appendix A

Code

A.1 NXC Code

#include "NXCDefs.h"

#define POWER 70
#define REVERSE 40
#define POWERTURN 60
#define POWERROTATE 60

#define TURN_PCT 20
#define LIGHT THRSHOLD 45
#define TURN ROTATION 40

#define MOTOR_RIGHT OUT_A

#define MOTOR _LEFT OuT_B
#define MOIOR,_BOTH OUT_AB
// Definitions of the different motions
#define CASE S 0
#define CASE L 1
#define CASE R 2
#define CASE C 3
#define CASE B 4
#define CASE TR )
#define CASE_TL 6
#define CASE STOP -1

mutex right;
mutex left;

int LIGHT_LEFT = 0;
int LIGHT_RIGHT = O0;
int LIGHT_FRONT = 0

int left_run = 1;

int right_run = 1;

int left_run_back = 0;
int right_run_back = 0;
int can_run = 0;

34
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int run_speed=60;

int disp_cmd;

JE

3k 3k ok 3 ok oK K Kok 3K K K ok 3K K K ok K Kk ok K Kk ok K K oK 3K Kk ok K Kk ok K ok ok K Kk ok KK ok 3K Kk ok oK K K ok K Kk ok oK Kk ok KKk K Kk ok X

* Manually defined command string for testing
S kKK K o oK KKK K R K K KKK K K K K KKK K R K K KKK K K K ok KKK K R K K KKK K K oK K KKK K K K K KKK K K K K KKK K Kk

*
//int cmds[] — {CASE_S,CASE_B,CASE_B};

int cmds[] = <
{1,2,0,2,3,2,3,5,2,0,3,2,1,0,1,0,0,1,0,0,0,3,1,3,5,2,0,0,0,2,0,0,2,0,2,1

//int cmds[] ={CASE L, CASE R, CASE S, CASE R, CASE C, CASE R, CASE C, <
CASE TL, CASE R, CASE S, CASE C, CASE R, CASE L, CASE S, CASE L,
CASE S, CASE S, CASE L, CASE S, CASE S, CASE S, CASE C, CASE L,
CASE C, CASE TL, CASE R, CASE S, CASE S, CASE S, CASE R, CASE S,
CASE S, CASE R, CASE S, CASE R, CASE L, CASE S, CASE C, CASE R,
CASE L, CASE S, CASE R, CASE R, CASE S, CASE C, CASE R, CASE S,
CASE S, CASE R, CASE R, CASE C, CASE R, CASE S, CASE S, CASE R,
CASE L, CASE S, CASE L, CASE L, CASE S, CASE S, CASE S, CASE C,
CASE R, CASE S, CASE R, CASE S, CASE S, CASE C, CASE L, CASE R,
CASE R, CASE S, CASE C, CASE TL, CASE L, CASE S, CASE S, CASE S,
CASE L, CASE S, CASE L, CASE S, CASE S, CASE S, CASE C, CASE TL,
CASE S, CASE S, CASE S, CASE R, CASE S, CASE L, CASE S, CASE L,
CASE L, CASE C, CASE L, CASE R, CASE S, CASE S, CASE S, CASE S,
CASE R, CASE S, CASE R, CASE S, CASE S, CASE S, CASE L, CASE R,
CASE R, CASE C, CASE TR, CASE S, CASE S, CASE L, CASE L, CASE S,
CASE C, CASE L, CASE R, CASE R, CASE S, CASE S, CASE C, CASE R,
CASE L, CASE S, CASE L, CASE S, CASE S, CASE L, CASE S, CASE S,
CASE S, CASE S, CASE L, CASE S, CASE C, CASE TL, CASE S, CASE R,
CASE R, CASE C, CASE R, CASE L, CASE L, CASE C, CASE R, CASE S,
CASE R, CASE R, CASE C, CASE STOP};

//run oneeighty

//int emds[] = {CASE S,CASE S,CASE TR};

R e T

//run in eights
//int cmds[] = {CASE_S,CASE_L,CASE_S,CASE_R,CASE_S,CASE_R,CASE_S,CASE_R, <
CASE_S,CASE_R,CASE_S,CASE_L,CASE_S,CASE_L,CASE_S,CASE_L};

/* End of commans sting definitions x/

—1:

int cmd_counter ;

Jx =

3k 3k ok 3 ok oK K Kk 3K K K oK 3K K K ok K Kk ok K Kk sk KK oK 3K Kk ok K Kk sk K ok ok K Kk sk K K ok 3K Kk ok 3K K K ok K Kk ok oK Kk ok KKk K Kk ok X

that

* In the following we define functions enables —
disables
* behaviours. Note

3k 3k 3k >k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k sk sk sk ok 3k 3k sk sk ok 3k sk sk sk >k 3k 3k sk sk >k 3k 3k sk sk ok 3k sk sk sk ok ok skosk ok ok ok

*/

/******************************************************************

that functions or

*

* Routine disableRun
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G S

*

Parameters
Return
Purpose

None

nothing

Disables the autonomous forward movement routines.
And stops the motors

stk o o o KKK K SR K S KKK KK SR K S KK KK SR K R KK KK SR K R KK KK oK ok ok KK KK SRR K K KKK SRR Rk ok /)
void disableRun () {
Acquire (left);
left_run = 0;
Release (left);

}

Acquire(right);
//PlayTone (440,1000) ;
right_run = 0;
Release(right);

0ff (MOTOR_RIGHT);
0ff (MOTOR_LEFT);

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***********************

*

EE S S

*

Routine
Parameters
Return
Purpose

enableRun

int

nothing

enables the autonomous forward movement routines.
The motors are not started here, this only enables
the control task

>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***********************/

void enableRun(int power) {

}

run_speed

power;

left_run = 1;
right_run = 1;

/******************************************************************

*

ECE S S I R

*

Routine
Parameters
Return
Purpose

disableRunBack

None

nothing

Disables the runback mode where we drive back one
field after placing the can.

The motors are stoped.

sk ok o ok ok ook ok o o K K R ok SR R R K K R oK SR R R K KR oK R R R K KR ok ok ok R K Kk ok ok ok K Kk ok ok ok Kok sk ok ok ok /
void disableRunBack () {
Acquire (left);
left_run_back = 0;
Release(left);

Acquire(right);
right_run_back = 0;
Release(right);

0ff (MOTOR_RIGHT);
0ff (MOTOR_LEFT) ;
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/******************************************************************
*

* Routine : enableRunBack

* Parameters : None

* Return : nothing

* Purpose : Enables the behaviour where we move a field back
* after having placed a can.

*

st ok ko ok sk sk sk ok ok s ok ok ok sk ok ok K sk ok sk sk sk ok K s ok ok sk sk ok ok Kk ok sk sk sk ok K Kk ok sk sk sk ok Kk ok sk sk sk ok ok Kk ok sk ok sk ok ok ok /
void enableRunBack () {
left_run_back = 1;
right_run_back = 1;

/******************************************************************
*

* Routine : disableFrontSensor

* Parameters : None

* Return : nothing

* Purpose : Stops the behaviout used while moving a can.

* While in this behaviour we use a aditional sensor
* inorder to stop precisely when the can is on the
* cross of two intersecting lines.

*

stk o o o KKK K SR K KKK KK SR K S KK KK SR K R KKK KK 3K K R KK KoK oK oK ok KK KK SRR S K KKK ROk Rk ok /)
void disableFrontSensor () {
can_run = 0;

/******************************************************************
sk

* Routine : enableFrontSensor

* Parameters : None

* Return : nothing

* Purpose : Starts the behaviour that will ensure that the

* robot places the can object accurately.

* While this behaviour is in effect we use an

* aditional sensor inorder to stop precisely when

* the can 1s on the cross of two intersecting lines.
*

stk o o o KKK K SR K S KKK KK SR K S KK KK SR K R KK KK 3K K R KK KK SR K ok KK KK SRR S K KKK ROk R ok ok /)
void enableFrontSensor ()
can_run — 1;

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<************************
*

* Routine : runStraight

* Parameters : int

* Return : nothing

* Purpose : Drives forward a fized amount, using the given
* power setting.

*

s o o o K o o oK o S K o S oK o S K o R oK o R oK o R oK o R K o R oK o R oK o R Kok o Kok o Kok o koK /
void runStraight (int power){
//RotateMotor (OUT_AB,POWER, TURN_ ROTATION) ;
RotateMotorEx (MOTOR_BOTH,power ,TURN_ROTATION ,0,true, false);
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}

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<************************
*

* Routine : runRight

* Parameters : int

* Return : nothing

x Purpose : Turns the robot to the right and drives wup to
* the nezxt junction

*

S o oK S KK SR R KKK R KKK R KR R KKK R KR SR KK SR KK SR KK R KK SR KK K KR R K KK R KK ok koK /
void runRight (int power){
runStraight (power);
if (LIGHT_LEFT < LIGHT_THRSHOLD ) ({
//PlayTone (220,1000) ;

RotateMotor (MOTOR_LEFT ,power ,180);
while (LIGHT_RIGHT > LIGHT_THRSHOLD){
//OnFwd (MOTOR_LEFT, power) ;

OnFwdSync (OUT_AB ,power,100) ;

}

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<************************
*

* Routine : runRightRight

* Parameters : int

* Return : nothing

* Purpose : Turns the robot 180 deg. turning to the right and
* drives up to the next junction using the given

* power.

*

s o o o o K o o K o S K o S K o R K o R oK o R oK o SR K o SR oK o R oK o R K o R Kk o Kok o Kok o ok ok /
void runRightRight (int power){
runStraight (power);
//if (LIGHT LEFT < LIGHT THRSHOLD){

//PlayTone (220,1000) ;
//}

RotateMotor (MOTOR_LEFT , power,180);

OnFwdSync (OUT_AB ,power ,100) ;

while (LIGHT_RIGHT > LIGHT_THRSHOLD){
//PlayTone (220,1000) ;

}

0ff (OUT_AB);

RotateMotor (MOTOR_LEFT ,power ,180);
OnFwdSync (OUT_AB ,power ,100) ;
while (LIGHT_RIGHT > LIGHT_THRSHOLD){

, //
0ff (OUT_AB);

}

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<************************
*

* Routine : runLeft

* Parameters : int

* Return : nothing

* Purpose : Turns the robot to the left and drives up to
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*
*

the next junction

>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***********************/

void

}

runLeft (int power){
runStraight (power);
//if (LIGHT LEFT < LIGHT THRSHOLD){

//PlayTone (440,1000) ;
//}

RotateMotor (MOTOR_RIGHT , power ,180) ;

“dﬁle(LIGHT_LEFT > LIGHT_THRSHULD){
//OnFwd (MOTOR_RIGHT, power) ;
OnFwdSync (0UT_AB , power,—100);

/******************************************************************

*

SR T S R

*

Routine : runLeftLeft

Parameters : int

Return : nothing

Purpose : Turns the robot 180 deg.
drives up to the nezxt junction using the given

power.

turning to the

left and

>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***********************/

void

/%

void

runLeftLeft (int power){
runStraight (power);
//if (LIGHT RIGHT < LIGHT THRSHOLD){

//PlayTone (440,1000) ;
//}

RotateMotor (MOTOR_RIGHT ,power ,180) ;

OnFwdSync (OUT_AB ,power,—100);

“dﬁle(LIGHT_LEFT > LIGHT_THRSHULD){
//OnFwd (MOTOR_RIGHT, power) ;

}

0ff (OUT_AB);

RotateMotor (MOTOR_RIGHT ,power ,180) ;

OnFwdSync (OUT_AB ,power,—100) ;

while (LIGHT_LEFT > LIGHT_THRSHOLD){
//OnFwd (MOTOR_RIGHT, power) ;

0ff (OUT_AB);

runLeftLeft (int power){
runStraight (power);
if (LIGHT LEFT < LIGHT THRSHOLD){

//PlayTone (440,1000) ;
}

RotateMotor (MOTOR_RIGHT, power,180) ;

while (LIGHT LEFT > LIGHT THRSHOLD){
//OnFwd (MOTOR_RIGHT, power) ;
OnFwdSync (OUT_AB, power,—100);

}

RotateMotor (MOTOR_RIGHT, power,180) ;

while (LIGHT LEFT > LIGHT THRSHOLD){
//OnFwd (MOTOR_RIGHT, power) ;
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OnFwdSync (OUT_AB, power,—100) ;

}
*/

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***********************

*

x Routine : genNztCmd

* Parameters : null

* Return coant

x Purpose : Returns the next command to be executed

* Stops after erecuting the whole list in cmds[]
*

S o oK K KK SR R KKK R KKK R KR R KRR R KK SR KK SR KK SR KK SR KK SR KK R KK R KKK R KK ok koK /
int genNxtCmd (){
//cmd_counter = (emd_counter + 1) % ArrayLen(cmds);

cmd_counter+-+;

if (cmd_counter > (ArrayLen(cmds)—1)) {
cmd_counter ——;
return CASE_STOP;

}

else
return cmds [cmd_counter |;

//return cmds[emd_ counter /;

/*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***********************

*

* Routine : runInEights

* Parameters : int

* Return coant

* Purpose : Test routine used while driving the robot in
* figure eights n times

*

stk o o o KKK K SR K S KKK KK SR K R KK KK SR K R KKK KK SR K o KK KK oK R ok KK KK SRR S K KKK ROk Rk ok /)
int runInEights(int n){
cmd_counter ++;
for(int i = 0; i < n; i++){
return cmds|cmd_counter |;

/******************************************************************
*k

* Routine : readSensors

x Parameters : null

* Return : wvoid

* Purpose : Coutinously poll the sensors and store their
* values tn global variables

*

s o o o o o K o o oK o S K o S oK o o K o R oK o o K o R K o R K o R ok o R oK o R K ok o Kok o Kok o ok ok /
task readSensors (){
while (true){
LIGHT_RIGHT = Semsor(S1);
LIGHT_LEFT = Sensor(S52);
LIGHT_FRONT = Semnsor(S3);
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}

/******************************************************************
*

* Routine : running WithCan

x Parameters : null

* Return coant

* Purpose : Special control for moving with a can/jewel

* enables the robot to acurately place a jewel/can
* on the intersection of two lines, by using the

* erxtra front sensor.

*

S o oK K KK SR R KKK R KKK R KR R KRR R KK SR KK SR KK SR KK SR KK SR KK R KK R KKK R KK ok koK /
task runningWithCan (){
while (true) {
if (can_run){
if (LIGHT_FRONT < LIGHT_THRSHOLD){
//PlayTone (440,1000) ;
disableRun () ;
disableFrontSensor () ;

enableRunBack () ;

task motorRight (){
while (true) {
while(left_run){
Acquire (left);
//PlayTone (220,10) ;
if (LIGHT_RIGHT > LIGHT_THRSHOLD)
OnFwd (MOTOR_RIGHT ,run_speed);
else {
0ff (MOTOR_RIGHT);
}

Release (left);

}
//Off (MOTOR_RIGHT) ;

}

task motorLeft (){
while(true) {
while(right_run){
Acquire(right);
//PlayTone (220,10) ;
if (LIGHT_LEFT > LIGHT_THRSHOLD)
OnFwd (MOTOR_LEFT , run_speed);
else {
0ff (MOTOR_LEFT) ;
}

Release (right);

// Off (MOTOR_LEFT) ;
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}

task motorRightBack (){
while (true) {
while(left_run_back){

Acquire (left);

if (LIGHT_RIGHT > LIGHT_THRSHOLD)
OnFwd (MOTOR_LEFT,—REVERSE ) ;

else {
0ff (MOTOR_LEFT) ;

}

Release (left);

}
// Off (MOTOR_RIGHT) ;

}

task motorLeftBack (){
while (true) {
while(right_run_back){

Acquire(right);

if (LIGHT_LEFT > LIGHT_THRSHOLD)
OnFwd (MOTOR_RIGHT ,—REVERSE);

else {
0ff (MOTOR_RIGHT);

}

Release (right);

}
// Off (MOTOR_LEFT) ;

}

task controlDirection (){
while (true){
if ((LIGHT_LEFT < LIGHT_THRSHOLD && LIGHT_RIGHT < <«
LIGHT_THRSHOLD ) ) {
disableRun () ;
disableRunBack () ;

/% krims—krans der undersgger den pnskede retning */
int cmd = genNxtCmd () ;

//int cmd = runInEights (5);

disp_cmd — cmd;

//PlayTone (110,1000) ;

switch (cmd) {

case CASE_S:
runStraight (POWER);
//PlayTone (440,1000) ;
enableRun (POWER) ;
break;

case CASE_L:
runLeft (POWERTURN ) ;
//PlayTone (440,1000) ;
enableRun (POWERTURN ) ;
break;

case CASE_R:
runRight (POWERTURN ) ;
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//PlayTone (110,1000) ;
enableRun (POWERTURN) ;
break ;

case CASE_TR:
runRightRight (POWERROTATE ) ;
//PlayTone (110,1000) ;
enableRun (POWERROTATE);
break;
case CASE_TL:
runLeftLeft (POWERROTATE ) ;
//PlayTone (110,1000) ;
enableRun (POWERROTATE ) ;
break;
case CASE_C:
enableFrontSensor () ;
runStraight (POWER);
enableRun (POWER) ;
break ;
case CASE_B:
runStraight (—REVERSE);
enableRunBack () ;
break;
case CASE_STOP:
break ;
default:
break ;
}
}
}
}
task displaySensors (){
while (TRUE ) {
ClearScreen () ;
TextOut (0, LCD_LINE1, "L:");
NumOut (15, LCD_LINE1, LIGHT_LEFT);
TextOut (30, LCD_LINE1, "R:");
NumOut (45, LCD_LINE1, LIGHT_RIGHT);
TextOut (0, LCD_LINE2, "cmd counter: ");
NumQOut (70, LCD_LINE2, cmd_counter);
TextOut (0, LCD_LINE3, "can run? ")
NumQOut (70, LCD_LINE3, can_run);
TextOut (60, LCD_LINE1, "F:");
NumOut (75, LCD_LINE1, LIGHT_FRONT);
TextOut (0, LCD_LINE5, "Left—run : ");
NumQOut (68, LCD_LINE5, left_run);
TextOut (0, LCD_LINE6, "Rigtht—run: ");
NumOut (68, LCD_LINE6, right_run);
TextOut (0, LCD_LINE7, "Case is now : ");
NumQOut (78, LCD_LINE7, disp_cmd);
Wait (500) ;
}
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task main () {
SetSensorLight (S1);
SetSensorLight (S2);
SetSensorLight (S3);
//SetSensorTouch (S4);

//SetCustomSensorPercentFullScale (S1,50);

Precedes (readSensors ,motorRight ,motorLeft ,controlDirection, «
runningWithCan ,motorRightBack ,motorLeftBack); // displaySensors
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A.2 Java code

A.2.1 SokobanSolver class

package aiO0.sokoban;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.HashMap;
import java.util.PriorityQueue;

import ai0OO0.sokoban.Node;
import ai00.sokoban.Position;
import ai0OO0.sokoban.parser.SokobanParser ;

VAT

x $LastChangedRevision: 96 §

x $LastChangedDate : 2007—10—26 10:50:20 +0200 (fre, 26 okt 2007) $

* $LastChangedBy: gronbaek §

*

x SokobanSolverd is the primary class in the Sokoban Solver program.

* It uses a SokbanMapReader map as basis, and then solves the sokoban
puzzle

x by wutilising a tree structure and an Ax (A star) algorithm.

*

The requirements for the map is specified in the SokobanMapReader <+
class .

Each node in the possible solution s processed in three steps.

«—

First step: a while loop runs through each node in the open list. A
map 1S populated
* wusing the information from the node, and it’s checked if the current <«
node s
* the solution. If mnot, then check for wvaild positions that the <«
diamonds can be
x pushed from.
*
* Second step: Check for wvalid positions
*
* @author Bjorn Gronbaek
* @author Brian Horn
x @author Jon Kjaersgaard
*
x Q@Querston 3.0
*/
public class SokobanSolver {
SokobanMapReader map;
boolean debug = false;
boolean showstate = true;
/+*% The set of nodes that have been searched through x/
private HashMap<Integer , Object> closed = new HashMap<Integer , 0Object «
>0
private HashMap<Integer , HashMap<Integer , Object>> outerClosed = new <«
HashMap<Integer , HashMap<Integer , Object>>();
private PriorityQueue<Node> open = new PriorityQueue<Node >();
/*% The maz search depth x/
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int maxSearchDistance = 150;

int maxDepth = 0;

Vit
x Create a new SokobanSolver object for solving. The map must uphold <+
the specifications in the

SokobanMapReader class .

If the debug parameter is set true lots of output will be printed <
to system.out. This might take

x very long time.

x If the showstates parameter ts set true a small map with the <
position of the diamonds is printed

x for each new node processed.

*

* @param mapfile the map to be solved.

x @param debug show debug information .

* @param showstates show map for each node in the tree.

*
/
public SokobanSolver (String mapfile ,boolean debug, boolean showstates) «
{
map — new SokobanMapReader (mapfile);
map . createMap () ;
this.debug = debug;
this.showstate — showstates;

}
VAT

x The main method used when solving a map.

*

* @return an arraylist with positions the robot should go through.
*/

public ArrayList<ArrayList<Position>> solveMap () {
System.out.println("Starting path solving");

/* clear the open and closed list =/
closed.clear();
open.clear();

/* This is our initial node. It has no parent, and is added to the
open list */

Node node = new Node (map.diamonds ,map.man);

node . parent = null;

node .depth = 0;

node .cost = 0;

node . heuristic = 0;

open.add(node);

int number0fNodes = 0;

/+* While there is open nodes, continue search */

while ((maxDepth < maxSearchDistance) && (open.size() != 0)) {
number0fNodes ++;

/* Get the nezt node in the open list , and remove it from the list <

*/

Node currentNode = open.poll();

/+* Create a new map, with the state information from the node */
map . insertPositions (currentNode .diamonds ,currentNode .man) ;
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/+ Debug information being printed below here */
if (showstate){
System.out.println (map.man);
System.out.println(map);

}

if (debug) System.out.print("Open nodes: "+open.size()+"\t Closed <«

nodes: "+closed.size ()+"\t");
if (debug) System.out.println("Depth: "+currentNode.depth);
if (debug) System.out.println(map.goals+"” "+currentNode.diamonds);

if (!debug){
if (number0fNodes % 1000 = 0) System.out.println("Open nodes: "+

P

open.size ()+"\t Closed nodes: "+closed.size()+"\t depth: "+ <«

maxDepth) ;

}
/+* End of debug */

/* check if we have found the solution x/
if (map.goals.toString().equals(currentNode .diamonds.toString())) {
System.out.println("Found a solution!!!");
System.out.println("Depth: "4+currentNode.depth);
System.out.print ("Open nodes: "topen.size()+"\t Closed nodes: "+
closed.size ()+"\t");

return processSolution (currentNode);

}

/* If we haven 't found the solution, proceed to check the new <«
valid positions for the new node */
checkValidPositions(currentNode);

o

/* Clear the map after processing a node, and start again, with a <«
new node x/
map . removePositions ();
}
/* If we get to here, something is wrong */
System.out.println("Done... if we haven’t found a path, there’s no <«

solution!");
return null;

}

private ArraylList<ArrayList<Position>> processSolution (Node <«
currentNode ) {

System.out.println( "SOLUTION HERE: ") ;

ArrayList<SokobanSortedList > diamondList — new ArraylList< <
SokobanSortedList >();

ArraylList<ArrayList<Position>> pathList — new ArrayList<ArraylList< <«
Position >>();

diamondList .add(currentNode .diamonds);

pathList .add(currentNode .path);

while (currentNode . parent != null){
currentNode — currentNode .parent;
diamondList .add (currentNode .diamonds ) ;
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if (currentNode .path != null){
pathList .add(currentNode .path);
}

//System . out.printin (currentNode.path);

/%

for (SokobanSortedList list : diamondList) {
map.insertPositions (list , new Position (0,0));
System . out. printin (map) ;
System . out.printin <

(”
;
map. removePositions () ;

}
*/

return pathList;

}

private void checkValidPositions(Node currentNode){

/* For each diamond in the map, check for new wvalid positions x/
SokobanSortedList allValidPositions = new SokobanSortedList ();
PriorityQueue<Node> allNewNodes = new PriorityQueue<Node >();

for (Position diamond: currentNode.diamonds){
if (debug) System.out.println("Looking at diamond "+diamond.x+","+ «—
diamond.y);

/* Get wvalid positions for the diamond x/
SokobanSortedList validPositions = getValidPositionsForDiamond( «
diamond);

/* Create open nodes for the walid positions, for this diamond */
PriorityQueue<Node> openNodes = createOpenNodes (validPositions, «
diamond , currentNode ) ;

allValidPositions.addAll(validPositions );
allNewNodes .addAll (openNodes ) ;

}

if (debug){
System.out.println("All diamonds treated: "+allValidPositions .size «
()+" wvalid positions: "+allValidPositions);
System.out.println("All diamonds treated: "+allNewNodes .size()+"
new nodes.");
}

checkForClosedNodes(currentNode ,allValidPositions ,allNewNodes );

}

private void checkForClosedNodes(Node currentNode, SokobanSortedList <«
allValidPositions , PriorityQueue<Node> allNewNodes){
HashMap<Integer , Object> innerClosed;
if (outerClosed.containsKey (new Integer (currentNode.diamonds.hashCode <«

O))NA
if (debug){
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System.out.println("Diamonds ARE in closed list");
}
innerClosed = outerClosed.get(new Integer (currentNode.diamonds. «
hashCode ()));
if (innerClosed.containsKey (new Integer(allValidPositions .hashCode «
O)))A
if (debug){
System.out.println("New positions ARE in closed list");
}

else{
innerClosed .put (new Integer (allValidPositions.hashCode()) ,null);
open.addAll(allNewNodes ) ;
if (debug){
System.out.println("New positions ARE NOT in closed list");
System.out.println("New size of open list are: "+open.size());
}
}

else{
outerClosed .put ((new Integer (currentNode.diamonds.hashCode())), <«
new HashMap<Integer , Object >());
open.addAll(allNewNodes );

if (debug){
System.out.println("Diamonds ARE NOT in closed list");
System.out.println("New size of open list are: "+open.size());

}
}
}

private PriorityQueue<Node> createOpenNodes (SokobanSortedList «
validPositions, Position diamond, Node oldNode) {
PriorityQueue<Node> newNodes = new PriorityQueue<Node >();

for (Position position: validPositions ){

/* The new position of the man... the old position of the diamond <«
*/
Position newman = new Position(diamond.x,diamond.y);

/* Movement of the diamond */
int deltaX = diamond.x — position.x;
int deltaY = diamond.y — position.y;

/* New list of diamods, created from the old list x/
SokobanSortedList newdiamonds — new SokobanSortedList ();

for (Position oldDiamond: oldNode.diamonds){
/*
if (oldDiamond .z != newman.z &€ oldDiamond.y != newman.y){
newdiamonds . add (oldDiamond ) ;
}

*/
if (loldDiamond . equals (newman)){
newdiamonds .add (oldDiamond ) ;

}
}

/* Remove the diamond at the position of the man */
//newdiamonds . remove (newman ) ;
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/* And add the moved diamond’s new position */
Position diamondPos = new Position(diamond.x + deltaX, diamond.y + <
deltaV);

newdiamonds .add (diamondPos ) ;

Node newnode = new Node (newdiamonds ,newman);
newnode . setParent (oldNode) ;

newnode .cost = calculateCost ()foldNode.cost;
newnode . heuristic = calculateHeuristic (diamondPos);
newnode . path = map.findPath(position);

newnode . path.add (0 ,newman) ;

if (debug) System.out.println("Adding new open node: ("+diamondPos. «
x+","+diamondPos .y+") cost: '"4+newnode.cost+" heuristic: "+ <«
newnode .heuristic);

if (newnode .depth > maxDepth) maxDepth = newnode.depth;
newNodes .add(newnode);

}

return newNodes;

}

private SokobanSortedList getValidPositionsForDiamond(Position pos) {
SokobanSortedList validPositions = new SokobanSortedList ();

for (int x=-1;x<2;x++) {
for (int y=—-Ly<2;y++) {

// check if tile is the same as current tile
if ((x = 0) & (y — 0)) {

continue; //jump to next for
}

// check if tile is diagonal placed
i ((x 1= 0) & (y 1= 0)) {

continue; //jump to nezxt for
}

* eck 1 e posttion is not a wall, 1 e opposite position
Check if th 110 ) t I .f th 1t 114
i1s not a wall and finally
* 4f the man can reach the position
*/
ystem.out.printin ((pos.zx+x)+","+(pos.y+y)+": "+map.terrain |
S t t y tl mn n n t y
pos.z+z [[pos.y+y]);

if (map.terrain|pos.x+x|[pos.y+y| = SokobanMapStatics .GROUND && +«
//the target position
map . terrain|pos.x—x|[pos.y—y| = SokobanMapStatics .GROUND){ +«

//the position the man must reach
if (debug) System.out.println("Position: "+(pos.x+x)+","+(pos.y <
+y)+" is not a wall");
ArrayList<Position> path = map.findPath(new Position(pos.x+x, «
pos.y+y));
if (path != null){ //is there a path for the man
if (debug) System.out.println("Position: "+(pos.x+x)+","+(pos <
.y+y)+" is reachablel");
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validPositions .add (pushDiamond (pos, new Position(pos.x}x,pos <«
YY) ) //the new wvalid position

//System . out.printin (path);

if (debug) System.out.println("Adding position: "+(pos.x+x)+" <«

, "+H(pos . yty));

return validPositions;

}

Position pushDiamond (Position diamond, Position pushFrom){
return new Position(diamond.x—(diamond.x—pushFrom.x) ,diamond.y—( <
diamond.y—pushFrom.y));

}

private float calculateCost () {
/* Since the fields are always identical, just return the same value <«
always =/
return 10;

}

private float calculateHeuristic (Position diamondPos) {
int closestrange = Integer.MAX_VALUE;

Position current;

Iterator<Position> it = map.goals.iterator ();
while(it.hasNext ()){
current = it.next ();
int distance = getDistance (diamondPos ,current);
if (distance < closestrange){
closestrange — distance;

}
}

int manrange = getDistance (diamondPos, map.man) ;

return (closestrange + manrange) * 10;

private int getDistance (Position diamondPos, Position current) {
int deltaX = diamondPos.x — current.x;
int deltaY = diamondPos.y — current.y;
return (int) Math.sqrt (Math.pow(deltaX,2)+Math.pow(deltaY,2));

}
VAT

x @param args
*/
public static void main(String|[]| args) {
boolean debug = Boolean.valueOf (args|[1]) ;
boolean showstate — Boolean.valueOf (args|[2]);
SokobanSolver solver = mew SokobanSolver (args[0],debug, showstate);
ArrayList<ArrayList<Position>> solution = solver.solveMap();

Brian Horn, Bjgrn Grgnbak & Jon Kjeersgaard 51




357

359

361

363

367

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

AIOO - Sokoban Solver A.2. Java code

if (solution != null){
for (ArrayList<Position> list : solution) {
System.out.println(list);
}

System.out.println(new SokobanParser (solution).parse2simlator());
String robotResult = new SokobanParser (solution).parse2robot();
System.out.println(robotResult);
System.out.println(SokobanParser.cleanCanRuns (robotResult));

A.2.2 SokobanMapReader class

package aiO0.sokoban;

import java.io.BufferedReader

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.PriorityQueue;
import java.util.Scanner;

/

*

$LastChangedRevision: 96 §
$LastChangedDate : 2007—10—26 10:50:20 +0200 (fre, 26 okt 2007) $
$LastChangedBy: gronback $

@author Bjorn Gronbaek
@author Brian Horn
@author Jon Kjaersgaard

KK K K K X X X X

*/

public class SokobanMapReader {
private BufferedReader inputStream;
private String filename;

private Scanner configScanner = null;
public int [|[] terrain;

int width;

int height;

public SokobanSortedList diamonds = new SokobanSortedList ();
public SokobanSortedList goals = new SokobanSortedList ();
public Position man;

public SokobanMapReader (String filename){
this.filename = filename;
}

private void readMap(String filename){
try {
inputStream = new BufferedReader (new FileReader (filename));
} catch (FileNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;
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}
}

public void insertPositions (SokobanSortedList diamonds, Position man){

for (Position pos : diamonds) ({
terrain|pos.x|[pos.y| = SokobanMapStatics .DIAMOND;
}

this .man = man;

}

public void removePositions () {
for (int y =0; y<terrain|[0].length; y++){
for (int x=0;x<terrain.length; x++){
if (terrain|x|[y]==SokobanMapStatics .DIAMOND ) {
terrain|x|[y]| = SokobanMapStatics .GROUND;

}
}
this.man = null;

}

public void createMap () {
readMap (filename);
System.out.println("Creating MAP");

try {
configScanner = new Scanner (inputStream.readLine());
width = configScanner .nextInt();
height = configScanner .nextInt();

terrain = new int|[width|[height |;
System.out.println("New map is: "4+width+"x"+height);

StringBuffer sb;
for (int y=0;y<height;y++){
sb = new StringBuffer (inputStream.readLine ());
char tmp;
for (int x=0; x<width;x++){
if(x < sb.length()) tmp = sb.charAt(x);
else tmp = 'E’;
switch (tmp) {
case 'X’:
terrain|[x|[y] = SokobanMapStatics.WALL;
break;
case ’'J’:
diamonds .add (new Position(x,y));
break;
case 'G’:
goals.add (new Position(x,y));
break;
case 'M’:
man = new Position(x,y);
break;
default:
//map.setTerrain(j, i, SokobanMap.GROUND) ;
break;
}

}
}
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System.out.println("x — width = "+terrain.length);
System.out.println("y — height = "+terrain[0].length);

} catch (IOException e) {
System.out.println("File Problem!!!!");
e.printStackTrace ();

}
}

public String toString () {
String temp = "'";
for (int y = 0; y < terrain|[0].length; y++) {
for (int x = 0; x < terrain.length; x++) {
if (terrain|x|[y|==SokobanMapStatics .GROUND){

temp+=".";

}

if (terrain|x|[y|==SokobanMapStatics .DIAMOND ) {
temp+="D";

if (terrain|x|[y|==SokobanMapStatics .GOAL){

temp+="G";
}
if (terrain|x|[y|]==SokobanMapStatics .WALL){
temp+="W";
}
if (terrain|x|[y|==SokobanMapStatics .MAN){
temp+="M";
}
}
temp+="\n";
}
return temp;

}

public void printFile (){
readMap (filename);
String line;
try {
line = inputStream.readLine ();
while(line != null){
System.out.println(line);
line = inputStream.readLine ();
}
} catch (IOException e) {
System.out.println("Read error on file");
e.printStackTrace () ;

}
}

/*

public Set<PathPosition> findPath (Position position) {
Set<PathPosition> result = new TreeSet<PathPosition >();
PathPosition orgPos = new PathPosition (man.z, man.y);
orgPos.setOriginPosition (orgPos);
result.add(orgPos);
int pathLength = 100;
terrain [man.z [[man.y] = 100;
pathLength ++;

Brian Horn, Bjgrn Grgnbak & Jon Kjaersgaard

54




163

165

167

169

171

173

175

177

181

183

185

187

189

191

195

199

201

203

205

207

209

213

217

AT00 - Sokoban Solver

A.2. Java code

Iterator <PathPosition> it = result.iterator();
while (it . hasNezt ()) {
PathPosition pos = it.nezxt();
pathLength = terrain [pos.z][[pos.y];
if (pos.x == position.z &6 pos.y == position.y) {
for (int 1 = 0; 1 < terrain.length; i++) {
for (int j = 0; j < terrain [0].length; j++) {
if (terrain[i][5] > 99){
terrain [i[[j]= SokobanMap2.GROUND;
}
}
}

}
if (terrain [pos.x—1][pos.y] == SokobanMap2.GROUND) {

PathPosition newPo = new PathPosition (pos.z—1,pos.y);
newPo. setOriginPosition (orgPos);

terrain [pos.z—1][pos.y]=pathLength +1;
result.add(newPo);

if (terrain [pos.z+1][pos.y] == SokobanMap2.GROUND) {
PathPosition newPo = new PathPosition (pos.z+1,pos.y);
newPo. setOriginPosition (orgPos);
terrain [pos.z+1][pos.y]=pathLength +1;
result.add(newPo);

}

if (terrain [pos.z[[pos.y—1] == SokobanMap2.GROUND) {
PathPosition newPo = new PathPosition (pos.z,pos.y—1);
newPo. setOriginPosition (orgPos);
terrain [pos.z[[pos.y—1]=pathLength +1;
result.add(newPo);

}

if (terrain [pos.z[[pos.y+1] == SokobanMap2.GROUND) {
PathPosition newPo = new PathPosition (pos.z,pos.y+1);
newPo. setOriginPosition (orgPos);
terrain [pos.z[[pos.y+1]= pathLength +1;
result.add(newPo);

}
}

for (int ¢« = 0; 1 < terrain.length; i++) {
for (int j = 0; j < terrain [0].length; j++) {
System . out.printin (terrain[i[[j]);
if (terrain[i][5] > 99){
terrain [i[[j] = SokobanMap2.GROUND;
result.add(new PathPosition (i,j));
}
}
}
return result;
}
*/

public ArrayList<Position> findPath(Position targetPosition) {

//System . out.printin ("Finding path to: " + targetPosition+"
"+man) ;
PathPosition startPosition = new PathPosition(man.x,man.y);

from man «—
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startPosition.setOriginPosition(null); //this is the start, there
1S no parent
int pathLength = 100;
terrain|[man.x]|[man.y]= 100;
pathLength{-+;
PriorityQueue<PathPosition> openPositions — new PriorityQueue< <
PathPosition>();
ArrayList<Position> path = mew ArraylList<Position >();
openPositions .add(startPosition);
while (openPositions .size ()> 0){
PathPosition currentPosition = openPositions.poll();
pathLength = terrain|[currentPosition.x][currentPosition.y];
if (currentPosition.x—targetPosition.x && currentPosition.y— «
targetPosition.y){
for (int i = 0; i < terrain.length; i++) {
for (int j = 0; j < terrain|[0].length; j++) {
if(terrain[i][j] > 99){
terrain|i][j]= SokobanMapStatics .GROUND;
, }
}
path.add ((Position) currentPosition);
while(currentPosition.orgPosition != null){
currentPosition = currentPosition.orgPosition;
path.add ((Position) currentPosition);
//System . out.printin (path);
return path;
}
if (terrain|currentPosition.x—1]|[currentPosition.y|] =— <«
SokobanMapStatics .GROUND){
PathPosition newPo — new PathPosition (currentPosition.x—1, <
currentPosition.y);
newPo.setOriginPosition (currentPosition);
terrain|currentPosition.x—1|[currentPosition.y|=pathLength+1;
openPositions .add(newPo);
if (terrain|currentPosition.x+1][currentPosition.y|] =— «
SokobanMapStatics .GROUND) {
PathPosition newPo = new PathPosition (currentPosition.x+1, <
currentPosition.y);
newPo.setOriginPosition (currentPosition);
terrain|currentPosition.x+1][currentPosition.y]=pathLength+1;
openPositions .add(newPo);
if (terrain|currentPosition.x ][ currentPosition.y—1] =— «
SokobanMapStatics .GROUND) {
PathPosition newPo — new PathPosition (currentPosition.x, «
currentPosition.y—1);
newPo.setOriginPosition (currentPosition);
terrain|currentPosition.x]|[currentPosition.y—1]=pathLength+1;
openPositions .add(newPo);
}
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if (terrain|currentPosition.x|[currentPosition.y+1] =— «
SokobanMapStatics .GROUND){
PathPosition newPo — new PathPosition (currentPosition.x, «

currentPosition.y+1);
newPo.setOriginPosition (currentPosition);
terrain|currentPosition.x || currentPosition.y+1]= pathLength+1;
openPositions .add(newPo);

}
}

for (int i = 0; i < terrain.length; i++) {
for (int j = 0; j < terrain|[0].length; j++) {
if(terrain[i][j] > 99){
terrain[i][j] = SokobanMapStatics.GROUND;

}
}

return null;

public boolean isReachable (Position positiom) {
PathPosition orgPos = new PathPosition (man.x,man.y);
orgPos .setOriginPosition (orgPos);
int pathLength = 100;
terrain|[man.x][man.y]= 100;
pathLength+-+;
PriorityQueue<PathPosition> openPositions — new PriorityQueue< <
PathPosition >();
openPositions .add(orgPos);

while (openPositions .size () >0){
PathPosition pos = openPositions .poll();
pathLength = terrain|pos.x|[pos.y];
if (pos.x—position.x && pos.y—position.y){
for (int i = 0; i < terrain.length; i++) {
for (int j = 0; j < terrain|[0].length; j++) {
if(terrain[i][j] > 99){
terrain|i][j]= SokobanMapStatics .GROUND;
}

}
}

return true;

if(terrain|[pos.x—1]|[pos.y| = SokobanMapStatics .GROUND){
PathPosition newPo — new PathPosition (pos.x—1,pos.y);
newPo.setOriginPosition (orgPos);
terrain|pos.x—1]|[pos.y]=pathLength+1;
openPositions .add(newPo);

if(terrain|pos.x+1]|[pos.y| = SokobanMapStatics .GROUND){
PathPosition newPo — new PathPosition (pos.x+1,pos.y);
newPo.setOriginPosition (orgPos);
terrain|pos.x+1]|[pos.y]=pathLength-+1;
openPositions .add(newPo);

if (terrain|pos.x|[pos.y—1] = SokobanMapStatics .GROUND){
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AIOO - Sokoban Solver A.2. Java code

PathPosition newPo = new PathPosition (pos.x,pos.y—1);
newPo.setOriginPosition (orgPos);
terrain|pos.x||[pos.y—1l]=pathLength+1;

openPositions .add(newPo);

if(terrain|pos.x|[pos.y+1] = SokobanMapStatics .GROUND){
PathPosition newPo = new PathPosition (pos.x,pos.y+1);
newPo.setOriginPosition (orgPos);
terrain|pos.x||[pos.y+1l]= pathLength-+1;
openPositions .add(newPo);

}
}

for (int i = 0; i < terrain.length; i++) {
for (int j = 0; j < terrain|[0].length; j++) {
if(terrain[i][j] > 99){
terrain[i][j] = SokobanMapStatics.GROUND;
}
}
}

return false;

public void showPath(List<Position> positions) {
for (Position position : positions) {
System.out.println(position);
}
}

public void testIsReachable (Position p) {
System.out . printIn (s skskkok sk skoskok skokoskok ok ook skskokok ok ok skokoskokokok 1)

System.out.println("Initial position of robot is : " + new Position( «
man.x, man.y));
System.out.println("The robot tries to move to position :" + p);

System.out.println("Is this possible? " + this.isReachable(p));

}

public void testFindPath (Position p) {

System.out . println ("sskskorkokokkok ko skokskok ok kokoskokskok ok ok okokoskokokk 1)

System.out.println("Initial position of robot is : " + new Position( «
man.x, man.y));

System.out.println

System.out.println

System.out.println

System.out.println

"The robot tries to move to position :" + p);
"The path for this is : ");
this.findPath(p));
”*********************************”);

~ S AN

}

public void testPriorityQueue () {

PriorityQueue<Position> t1 = new PriorityQueue<Position >();
PriorityQueue<Position> t2 = new PriorityQueue<Position >();
PriorityQueue<Position> t3 = new PriorityQueue<Position >();
PriorityQueue<Position> pqueue = new PriorityQueue<Position >();

tl.add(new Position (1,1
tl.add(new Position (2,2
tl.add(new Position (
t2.add(new Position (
2. add ( (
t2.add( (

new Position
new Position
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AT00 - Sokoban Solver

A.2. Java code

pqueue .
.addAll(t2);

pqueue

pqueue.
System.

addAll(t1);

addAll(t3);
out.println(pqueue);

public static void main(String|[]| args) {

SokobanMapReader mr = new SokobanMapReader ( "maps/testmapl. txt");
mr.createMap () ;
mr.printFile ();
//boolean dotest = false;
boolean dotest = true;
if (dotest) {

// mr.testlsReachable (new Position (8,1));

mr.testFindPath (new Position(1,1));
// mr. testPriorityQueue ();
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