
AI00 - Sokoban solverFinal report in AI00 2007

Title AI00 - Sokoban SolverWritten by Brian Horn, Bjørn Grønbæk & Jon KjærsgaardDeliverydate November 26, 2007Course AI00

Contents
1 Introdu
tion 31.1 The Obje
tive . 31.1.1 The Competition . 31.2 This Report . 3I The Sokoban Robot 41 Des
ription of the Robot 51.1 Requirements . 51.2 Implementation
hoi
es . 51.2.1 Navigation . 51.2.2 Sensor Pla
ement . 61.3 Modi�
ations . 72 Robot Behaviour 82.1 Behavioural Analysis and Design . 82.2 Behavioural Implementation . 92.2.1 Tasks . 92.2.2 Fun
tions . 102.3 Sensor Adjustment . 113 Performan
e Test 123.1 Test 1 . 123.2 Test 2 . 133.3 Con
lusion . 14II The Sokoban Solver 171 A* In General 181.1 Path�nding . 181.2 Approa
hes to Path�nding . 181.2.1 Undire
ted . 181.2.2 Dire
ted . 191.3 A* Path�nding Algorithm . 192 Design and Implementation Strategies 212.1 Design: Moving the Diamonds . 212.1.1 Sokoban Solver: Main . 222.1.2 Sokoban Solver: Finding New Positions 232.1.3 Sokoban Solver: The Closed List . 232.1.4 Sokoban Solver: Cost Fun
tions . 241

AI00 - Sokoban Solver CONTENTS3 Implementation of Sokoban Solver 253.1 The SokobanSolver
lass . 253.1.1 The Open List . 253.1.2 The Closed List . 253.2 The SokobanMapReader
lass . 263.3 The SokobanSortedList
lass . 264 Robot Modi�
ations 274.1 Testing on The Final Course . 274.1.1 Observed Problems Prior to Modi�
ations 274.1.2 Method of Problem Solving . 274.2 Stru
tural Modi�
ations to the Robot. 274.2.1 Stabilising the Rig . 274.2.2 En
losing the Sensors . 284.3 Modi�
ations to Movement patterns . 284.4 Test of The Path�nder Solution . 285 Improvements of the Path�nder 295.1 Path-�nding Improvements . 295.2 Review Of Existing Sokoban implementations . 295.2.1 Minimum Mat
hing Lower Bound (R0, 0 solved) 295.2.2 Transposition Table (R1, 5 solved) . 305.2.3 Move Ordering (R2, 4 solved) . 305.2.4 Deadlo
k Table (R3, 5 solved) . 305.2.5 Tunnel Ma
ros (R4, 6 solved) . 305.2.6 Goal Ma
ros (R5, 17 solved) . 315.2.7 Goal Cuts (R6, 24 solved . 315.2.8 Pattern Sear
h (R7, 48 solved) . 315.2.9 Relevan
e Cut (R8, 50 solved . 315.2.10 Overestimation (R9, 54 solved . 325.2.11 Rapid Random Restart (R10, 57 solved 32III Appendixes 33A Code 34A.1 NXC Code . 34A.2 Java
ode . 45A.2.1 SokobanSolver
lass . 45A.2.2 SokobanMapReader
lass . 52Todo list

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 2

Chapter 1Introdu
tion1.1 The Obje
tiveThe obje
tive is to navigate a
ourse for a Sokoban game. A robot will be required to e�e
tuatea solution to a given problem. The solution to the problem will be
al
ulated o�ine, and therobot must then fun
tion as a means to translate the solution into the real world.A
omplete model of the
ourse is known in advan
e, and a plan for a solution is
al
ulatedon a
omputer separate from the robot, and transferred to the robot as a series of
ommands.This do
ument des
ribes the implementation of a system to solve this problem.The real Sokoban
ourse is a grid of bla
k tape on a white ba
kground, the points wheretwo tape lines meet, the interse
tion,
orresponds to a �eld in the model. The model does not
ontain any data about the distan
e between points, nor does it
ontain data on irregularities inthe playing �eld et
. The robot must therefor
ompensate for these on its own.1.1.1 The CompetitionAll groups taking the AI00
ourse must parti
ipate in a
ompetition, where the obje
tive is tosolve the real world puzzle in the shortest amount of time.1.2 This ReportThis report
onsist of two major parts.Part One: The �rst part des
ribes the robot used to solve the puzzle. This part is mostly thereport that was delivered as a preliminary report, but modi�ed in a

ordan
e with re
eivedfeedba
k.Part two: The se
ond part
onsist mainly of the o�ine path planning. Also there is a partdes
ribing the modi�
ations made to the robot in response to problems revealed by runningthe a
tual solution on the
ompetition
ourse, rather than the test
ourse.All relevant sour
e
ode is pla
ed in a separate appendix se
tion.
3

Part IThe Sokoban Robot

4

Chapter 1Des
ription of the Robot1.1 RequirementsFrom a
ursory inspe
tion of the problem it is evident that the following
omponents is needed:Sensors In order to navigate the
ourse some kind of input from the physi
al world is required.A
tuators In order for the robot to solve the problem it needs some way to a�e
t the world.Stable frame In order to use the sensors and a
tuators in a meaningful manner, knowledgeabout their position relative to the rest of the robot is needed. Also there must be somekind of guarantee that they will not move signi�
antly from this known position. Thismeans that the frame/
hassis must be a stable
onstru
t.A "brain" Some way to evaluate the sensor input, and a
tivate the a
tuators is needed.The design must be able to a
hieve the following three goals:
• Navigating the �eld.
• Moving a "diamond"
• Pla
ing a "diamond"It is not ne
essary to lift a diamond, and it is not legal to turn while moving a diamond. It ishowever legal to pull the diamond ba
k if it is done in order to pla
e it a

urately.1.2 Implementation
hoi
esThe robot is build from LEGO Mindstorm, whi
h means that a lot of fa
tors are predetermined.The a
tuators will be the LEGO rotational motors. The "brain" will obviously be the LEGONXT blo
k. As this has three output and four inputs, the number of sensors and a
tuators islimited. Also physi
al dimensions of the blo
ks and weight must be taken into
onsideration.1.2.1 NavigationThe playing �eld is marked in bla
k and white, and it
an be assumed that a full model is knownto the program that plans the movements. Further we assume that we will not have to dealwith unknown obsta
les, su
h as other vehi
les. In this
ase only sensors that dete
t the bla
kline that is to be followed is really ne
essary. It was determined that two light sensors pla
ed
lose to ea
h other, and at a distan
e from the turning point would be su�
ient to dete
t if therobot follows the line. Additionally the sensors will provide enough information to
orre
t thedire
tion of the robot as needed. 5

AI00 - Sokoban Solver 1.2. Implementation
hoi
esLEGO Mindstorm
ome with building instru
tions to a number of designs. Most of these usethe same basi

hassis. As this
hassis is a very stable design, we
hose to use this as the basisfor the frame.The design uses three motors as a integral part of the design. Two for driving and turning,and one for other purposes. We only need the two, but have kept the third as it adds stabilityto the
hassis.

Figure 1.1: Chosen
hassisFigure 1.1 is a CAD drawing showing the robot as it is
urrently implemented. The boom infront pushes the �diamond� between �elds. The sensors behind the boom are used for followingthe bla
k lines, and dete
ting interse
tions. The front most sensor is used to dete
t interse
tionswhile pushing �diamonds�, in order to ensure that the �diamonds� are pla
ed exa
tly on theinterse
tion.The two wheels are used to both drive and steer the robot, with a single Bogey wheel forbalan
ing the tail. Ea
h wheel is driven by separate motors, allowing for a very sharp turningradius.1.2.2 Sensor Pla
ementThe two front sensors are pla
ed
entrally on the robots front end, at a spe
i�
 distan
e from therobot's turning axis, as shown in �gure 1.2. The two front sensors are pla
ed as
lose as possibleto ea
h other, while still being pla
ed on ea
h side of the bla
k line that the robot follows.The position of the sensors are important. If they get to far from the robot's turning axis,there is a danger that both sensors will get on the same side of the line before the dire
tion
anbe
orre
ted. This happens be
ause the turning speed of the sensors, if pla
ed to far from therobot's turning axis, gets to fast for the sensor sampling rate, and thus the robot
annot rea
tin time. This results in the robot straying from the path, whi
h is an unre
overable error.If they get too
lose to the robot's turning axis, the robot might already have turned asubstantial number of degrees, before the turn is dete
ted by the sensors. This results in a�zig-zag� movement of the robot, whi
h signi�
antly slow-down as a
onsequen
e.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 6

AI00 - Sokoban Solver 1.3. Modi�
ations
d1

d2
Robot

Direction of movement

Error in direction

sensors
Line to folowFigure 1.2: Sensors pla
ement1.3 Modi�
ationsThe �nal implementation of the robot, is the result of a iterative pro
ess, in whi
h the robot wassubje
ted to a series of tests, interspersed with redesigns.The physi
al design of the robot
hanged as a result of both physi
al requirements of thegame, as well as modi�
ations to the behaviours. For example it be
ame evident that the initialdesign had a turn
ir
le that was too wide, and as a result the front end, where the sensors aremounted, was shortened. This gave a mu
h smaller turn
ir
le.When pla
ing the sensors on the robot it was important to keep in mind, that if the sensors
ame too
lose to the axis around whi
h the robot turns, it would no longer be able to drive in astraight line. Therefor it be
ame a matter of iteratively
hanging the pla
ement of the sensors,in order to maximise the line following ability, while at the same time keeping the turn
ir
lesmall enough.Similarly it was dete
ted that the initial design had no way of stopping the robot when the�diamond� was exa
tly on the interse
tion. This was solved by adding the front sensor. Thissensor is only used when pushing a �diamond�.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 7

Chapter 2Robot BehaviourThe behaviour of the robot
an generally be separated into three parts, whi
h
ombined
ontrolsthe robot in its entirety. The three behaviours are basi
ally:
• path following
• rotation
• de
ision makingThe behaviours are dis
ussed in detail in the next se
tion.The behaviours are implemented as a mix of tasks and fun
tions, and
omplex behaviours aregenerally made up as a
ombination of more primitive behaviours, to ease the implementation.2.1 Behavioural Analysis and DesignTo design the robots software routines, an analysis of the needed behaviours were performed.The primary and very basi
 behaviour needed, is following the paths/lines on the Sokoban�eld. This means following a path from one �eld, to another �eld.The obvious behaviours needed are: Forward, Right turn, Left turn and Reverse. Fur-ther analysis of the robots behaviour and the playing �eld revealed the need for some additionalbehaviours: Forward with diamond and Turn 180. The behaviours are summarised anddes
ribed in table 2.1.All behaviours are based on the spe
i�
 sokoban board used in this proje
t. This meansthat behaviours are based around the bla
k lines on the board, and most importantly: theinterse
tions between the bla
k lines.No name des
ription1 Forward Follow a line until the next interse
tion is rea
hed.2 Reverse Reverse along a line until the next interse
tion is rea
hed.3 Turn Left Rotate left until the left line of the interse
tion is rea
hed,and then go forward (1).4 Turn Right Rotate right until the right line of the interse
tion isrea
hed, and then go forward (1).5 Forward with diamond Like Forward (1), ex
ept that the robot must stop whenthe diamond is on the interse
tion.6 Rotate 180 Like performing two Right turns (4) in a row, ex
ept thatthe �rst turn must not be followed by a ForwardTable 2.1: Behaviours for the Sokoban robot8

AI00 - Sokoban Solver 2.2. Behavioural ImplementationThe robot uses the sensors to dete
t when the robot is pla
ed exa
tly on top of an interse
tion.Only on interse
tions will new behaviours be performed. If for example the robot is performingthe Forward behaviour, it will keep doing that, until it dete
ts an interse
tion.All behaviours will automati
ally take the robot from one interse
tion and to the next inter-se
tion. When the robot is pla
ed on an interse
tion, and starts the Turn left behaviour, it willrotate 90 degrees left, and the automati
ally pro
eed forward to the next interse
tion.2.2 Behavioural ImplementationThe software for the robot is written in the Not eXa
tly C (NXC) programming language usingthe Bri
xCC IDE. The most important fa
t to remember when dis
ussing the software designand implementation, is that NXC allows multi-tasking to take pla
e. This means that all thetask se
tions of the
ode, are run in parallel.As stated, the
omplete behavioural system of the robot, is
omposed of several sub-systemsresponsible for a limited fun
tionality. The
omplete systems
onsists of several tasks all runningsimultaneously and
ontinuously, and a number of fun
tions for performing limited fun
tionalityspe
i�
 to a
ertain situation.2.2.1 TasksThe system utilises three task for
ontrolling the robot's motion and
urrent state. Additionallythe main task is responsible for the
on�guration of the various sensors, and is run prior to thethree
ontrolling task. The three
ontrol tasks are started simultaneously and on
e started they
annot be interrupted. To allow for a task to be temporally stopped and later restarted, a doublewhile
onstru
t, as shown below, is utilised:
� �1 task SomeTask () {while (true) { //run always3 while (somevariable) { // only run when somevar iab l e i s t rue// . . . some
ode here5 }}7 }
� �By setting the inner variable true or false, the running
an be disabled or enabled as needed.Motion
ontrol tasks The two motion
ontrol tasks are the most important tasks in thesystem, and are the basis upon whi
h all other motion is based. Ea
h task is responsible for
ontrolling the speed of one of the robots two motors. As long as the sensor, pla
ed on the sameside as the
ontrolled motor, is observing a white surfa
e the motor is kept running. If the sensorobserves a bla
k surfa
e, indi
ating the sensor is now over a bla
k line, the
ontrolled motorstops. The basi
 fun
tionality is illustrated in the following
ode:
� �1 task MotionTaskRight () {while (true) { //run always3 while (right_motor) { // only run when t ruei f (right_sensor > RIGHT_SENSOR_THRESHOLD) OnFwd (RIGHT_MOTOR) ;5 else Off (RIGHT_MOTOR) ;}7 }}
� �Due to the pla
ement of the sensors, relative to the turn-point of the robot, this keeps therobot aligned with a sensor on ea
h side of the bla
k line, when moving forwards. When aninterse
tion is rea
hed, both sensors will observe a bla
k surfa
e, and the robot will stop.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 9

AI00 - Sokoban Solver 2.2. Behavioural ImplementationNo name des
ription1 RunStraight Move the robot forward.2 RunRight Turn 90 degrees right.3 RunLeft Turn 90 degrees left.4 RunRightRight Rotate right 180 degrees.5 RunLeftLeft Rotate left 180 degrees.Table 2.2: Main behavioural fun
tions for the Sokoban robotState
ontrol task The state
ontrol task
ontinuously evaluates the input from the threelight sensors on the robot. When the two sensors in front of the wheels both report bla
k, therobot has rea
hed an interse
tion. When this happens a list of
ommands is queried for thenext
ommand to be performed, e.g. go forward, turn left, et
. The prin
iple is shown in thepseudo-
ode below:
� �task ControlTask () {2 while (true) { //run alwaysi f (both sensors show bla
k) {4
md = getNxtCmd () ;Swit
h (
md) {6
ase FORWARD ://some
ode here8
ase LEFT :. . .10 }}12 }}
� �The state
ontrol task �rst ensures that the motion tasks are disabled (the motors are alreadystopped, sin
e both sensors are over a bla
k line), so that the motors will not start again, beforethe robot is ready to perform its next
ommand. The swit
h
ontrol stru
ture then evaluates thenext
ommand, and
alls one or several fun
tions, to get the robot to do the queued
ommand.Finally when the fun
tion report it is done, the state
ontrol task enables the motion
ontroltasks again.2.2.2 Fun
tionsSeveral fun
tions implement spe
i�
 behaviours needed in spe
i�
 situation. In general thefun
tions are invoked by the state
ontrol task, when the robot is navigating before runningforwards again. The main fun
tions are listed in table 2.2.RunStraightThe RunStraight fun
tion makes the robot drive forward a spe
i�
 distan
e. In
ontrast tothe motion
ontrol task, the sensor values are ignored, and the robot drive straight forward(syn
hronised motors) without regard for the bla
k lines. This is useful for moving the robotaway from an interse
tion, so the sensors get ba
k on the white surfa
e, without triggering thestate
ontrol task again.RunLeft and RunRightThe RunRight and RunLeft fun
tions turn the robot 90 degrees right or left respe
tively. Toturn the robot both motion
ontrol tasks are disabled, and the RunStraight fun
tion is
alled tomove the robot o� the interse
tion manually. The right or left motor is then a
tivated manually,to turn the robot a �xed number of degrees (about 45 degrees). This is done to ensure that theBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 10

AI00 - Sokoban Solver 2.3. Sensor Adjustmentsensors are now all away from the bla
k lines. Finally the left or right motor is a
tivated, byenabling one or the other of the motion
ontrol task, a

ording to the dire
tion the robot shouldturn. When the a
tive motion
ontrol task senses a bla
k line again, e.g. that it has turned 90degrees, the other motion
ontrol task is a
tivated, and the robot drives forward along the lineagain.RunLeftLeft and RunRightRightThe RunRightRight and RunLeftLeft fun
tions are, as the names apply,
ontinuation of theRunRight and RunLeft fun
tions, just rotating the robot 180 degrees instead. Basi
ally theyare identi
al to the 90 degrees version, ex
ept that they repeat the turning-part of the fun
tiontwi
e, before driving forward again.2.3 Sensor AdjustmentThe sensors are used in a mode that gives a per
entage value. A lower value means that thesensor reads less light, in this
ase the bla
k line. Likewise a high value means that the sensorreads the white board. Under di�erent lighting
onditions the pre
ise threshold value between abla
k and a white reading di�er somewhat. However the behaviours are made su�
iently robustthat a exa
t value are not required. Experiments have shovn that a threshhold of 50% is almostalways good enough.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 11

Chapter 3Performan
e TestThe following se
tion
ontains a des
ription of the various test s
enarios of the robot. These testsshould not be seen as the �nal evaluation of the robot, but rather as preliminary experiments ofthe morphology and physi
al design of the robot. We have performed a series of tests, where thepurpose of ea
h test is to reveal potentially weak design de
isions, primarily with provide us withenough knowledge to be in a position to
orre
t these potentially bad design
hoi
es su

essfully.Moreover, the tests should bring useful information regarding the
orre
t adjustment of thedi�erent parameters; like optimal power values of the motors, sensitivity of the light sensors, et
.The overall goal of the proje
t is that the robot should be able to play the Sokoban game.However, before
onsidering strategies and algorithms to solve this task, we have taken a bottomup approa
h; meaning that we have implemented basi
 motion behaviours like the ability tofollow a line and performing turns when ne
essary. The test base for these experiments is shownin �gure 3.1. The physi
al model of the �eld for playing Sokoban is a white square, with anarea of approximately 1.5 m2. The valid pushing paths are indi
ated by bla
k tape, forming agrid-like pattern as in �gure 3.1.Figure 3.2 shows a magni�ed outline of the grid from 3.1. The bla
k dot represents a
an,whi
h is the obje
t the robot must push around the grid path. In the real Sokoban game theobje
ts are diamonds - here
ans resemble diamonds.3.1 Test 1In this test, the robot tra
ks a path formed by two squares, where the perimeter of one squaretou
hes, without interse
ting, the perimeter of the other square thereby forming the numbereight (in digital). By navigating this parti
ular pattern, the robot is for
ed to perform both left-and right turns. The test is performed ten times and with di�erent power values of the motors.The result of the test is shown in table 3.1Test Speed Rounds Completed Error % Average lap time [s℄ Remark1 60 10 10 0 32 None1 70 10 10 0 29 None1 80 10 10 0 27.9 None1 90 10 1.5 15 30.6 Fails in turnTable 3.1: Result of test 1.
12

AI00 - Sokoban Solver 3.2. Test 2

124 cm

124 cmFigure 3.1: The grid layout representing the environment that the robot operates in.3.2 Test 2In this test, the robot tra
ks a path between two points. A strip of bla
k tape
onne
ts thepoints. The distan
e between the points is approximately 45
m. The robot starts from onepoint, with the line properly pla
ed between the two front sensors, thereby fa
ing dire
tly towardsthe opposite point. When the robot rea
hes the opposite point it performs a 180-degree turnand
ontinues toward the staring point. This
y
le is repeated ten times with di�erent powervalues of the motors. The result of the test is shown in table 3.2Test Speed Rounds Completed Error % Average lap time [s℄ Remark2 60 10 10 0 14.6 None2 70 10 5 50 13.4 Fails after turn2 80 10 1.5 15 16.6 Fails in turnTable 3.2: Result of test 2.
Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 13

AI00 - Sokoban Solver 3.3. Con
lusion

22 cm

22 cm

5.3 cm

Figure 3.2: Close view of the �eld in whi
h the robot operates.3.3 Con
lusionBy observing the performed tests, and spe
i�
ally their point of failure, several additions to,and �ne-tuning of, the robot's behaviours were done. The most important is the introdu
tion ofvariable power setting for the motors, based on the previous
ommand. This for example enablesthe robot to set the Forward speed setting, to a lower value after performing a 180 degrees turn,where it potentially has a problem �nding the bla
k line again.Table 3.3 shows the optimal speed setting derived from the performan
e tests, for severalbehaviours. With the adjusted speed settings, the robot is able to perform ten runs in everytest, with 100% su

ess rate.Situation Speed Des
riptionForward 80% When running dire
tly forward between interse
tions.Turn left / right 70& This is the maximum reliable speed when turning 90 de-grees.Rotate 180 degrees 60% Maximum reliable speed when turning 180 degrees.Forward after 180 rotation 60% This is the maximum speed, where the robot is able todetermine a line after 180 rotation, 100% reliable.Table 3.3: Variable speed settings.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 14

AI00 - Sokoban Solver 3.3. Con
lusion

Figure 3.3: Field layout for test 1.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 15

AI00 - Sokoban Solver 3.3. Con
lusion

Figure 3.4: Field layout for test 2.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 16

Part IIThe Sokoban Solver

17

Chapter 1A* In General1.1 Path�ndingThis se
tion des
ribes the A* algorithm in general and is therefore not
on
entrated at path�nd-ing in Sokoban in parti
ular, but rather on path�nding in a broader sense. Later the modi�
ationsused to adapt A* to solve Sokoban are des
ribed, in the design se
tion of this report.The planning of the path that the robot must follow is
al
ulated o�ine, meaning thatthe path is found in advan
e and not determined dynami
ally as the robot moves along. Thepath�nder will de�ne a path through a virtual world to solve a given set of
onstraints. Oftenthe
onstraints is to �nd the shortest path from the
urrent position of the agent to a spe
i�edtarget position. Path�nding systems typi
ally use pre-pro
e
essed representations of the virtualworld as their sear
h spa
e. The
ommon s
enario when path�nding in
omputer games, is thatthe representation of the virtual world is made in form of a map.1.2 Approa
hes to Path�ndingThere are many di�erent approa
hes to path�nding, but overall path�nding
an be divided into
ategories; undire
ted and dire
ted. These approa
hes are brie�y des
ribed in the followingse
tions.1.2.1 Undire
tedThis approa
h is analogous to a rat in a maze running around blindly trying to �nd a way out.The rat spends no time planning a way out and puts all its energy into moving around. Thusthe rat might never �nd a way out and uses most of the time going down dead ends. Thus, adesign based
ompletely on this
on
ept would not be useful in
reating believable behaviour foran AI agent.There are two main undire
ted approa
hes that improve e�
ien
y. These are Breadth-�rstsear
h and Depth-�rst respe
tively. Breadth-�rst sear
h treats the virtual world as a large
onne
ted graph of nodes. It expands all nodes that are
onne
ted to the
urrent node and thenin turn expands all the nodes
onne
ted to these new nodes. Therefore if there is a path, breadth-�rst will �nd it. In addition if there are several paths it will return the shallowest solution �rst.The depth-�rst approa
h is opposite of breadth-�rst sear
hing in that it looks at all the
hildrenof ea
h node before it looks at the rest, thus
reating a linear path to the goal. Only when thesear
h hits a dead end does it go ba
k and expand nodes at shallower levels. For problems thathave many solutions the depth-�rst method is usually better as it has a good
han
e of �ndinga solution after exploring only a small portion of the sear
h spa
e.
18

AI00 - Sokoban Solver 1.3. A* Path�nding Algorithm1.2.2 Dire
tedDire
ted approa
hes to path�nding all have one thing in
ommon, that they do not go blindlythrough the maze. This means that using a dire
ted strategy ensures a method of assessing theprogress from all adja
ent nodes before pi
king one of them. This is referred to as assessingthe
ost of getting to the adja
ent node. Typi
ally the
ost in game maps is measured by thedistan
e between the nodes. Most of the algorithms used will �nd a solution to the problem butnot always the most e�
ient solution - that is the shortest path. The main strategies for dire
tedpath�nding algorithms are:
• Uniform
ost sear
h g(n) modi�es the sear
h to always
hoose the lowest
ost nextnode. This minimises the
ost of the path so far, it is optimale and
omplete, but
an bevery ine�
ient.
• Heuristi
 sear
h h(n) estimates the
ost from the next node to the goal. This
uts thesear
h
ost
onsiderably but it is neither optimal nor
omplete.The two most
ommonly used algorithms for dire
ted path�nding in
omputer games; Dijk-stra's algorithm and the A* algorithm use one or more of these strategies. Dijkstra's algorithmuses the uniform
ost strategy to �nd the optimal path while the A* algorithm
ombines bothstrategies thereby minimizing the total path
ost. Thus A* returns an optimal path and isgenerally mu
h more e�
ient than Dijkstra's algorithm making it the ba
kbone behind mostpath�nding designs in
omputer games. Therefore we have
hosen A* as the primary tool in theimplementation for solving the Sokoban problem.1.3 A* Path�nding AlgorithmA* is a dire
ted algorithm, meaning that is does not blindly sear
h for a path - like a rat in a maze.Instead it assesses the best dire
tion to explore, sometimes ba
ktra
king to try alternatives. Thismeans that A* will not only �nd a path between two points, if a path exists, but it will �nd theshortest path if one exists and do so relatively fast.To use A* in
omputer games, the game map has to be pre-pro
essed before the A*-algorithm
an work. This involves breaking the map into di�erent points or lo
ations, whi
h are
allednodes. These nodes are used to re
ord the progress of the sear
h. In addition of holding the maplo
ation ea
h node has three other attributes. These are �tness, goal, and heuristi

ommonlyknown as f, g, and h respe
tively. Di�erent values
an be assigned to paths between the nodes.Typi
ally these values would represent the distan
es between the nodes. The attributes g, h,and f are de�ned as follows:
• g is the
ost of getting from the start node to the
urrent node i.e. the sum of all the valuesin the path between the start and the
urrent node.
• h stands for heuristi
 whi
h is an estimated
ost from the
urrent node to the goal node -usually the straight line distan
e from this node to the goal.
• f is the sum of g and h and is the best estimate of the
ost of the path going through the
urrent node. In essen
e the lower value of f the more e�
ient the path.The purpose of f, g, and h is to quantify how promising a path is up to the present node.Additionally A* maintains two lists, an Open and a Closed list. The Open list
ontains all thenodes in the map that have not been fully explored yet, whereas the Closed list
onsists of allthe nodes that have been fully explored. A node is
onsidered fully explored when the algorithmhas looked at every node linked to it. Nodes therefore simply mark the state and progress of thesear
h. Pseudo
ode for the general A* algorithm is given in algorithm 1.The pseudo
ode outlined in algorithm 1 is the path�nding method used in most
omputergames. Its simply tries to �nd af path from a given starting point to a spe
i�ed target. Due toBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 19

AI00 - Sokoban Solver 1.3. A* Path�nding AlgorithmAlgorithm 1: A* path�nding - normal versionPre-
onditions:1 Both Open and Closed lists are empty.2 Variables B and P are nodes.3 Variables f , g, and h represents �tness, goal, and heuristi
 respe
tively.4 Let P = starting point5 Assign f , g, and h values to P .6 Add P to the Open list. At this point P is the only node in the Open list.7 while Open list is not empty do8 Let B = the best node from the Open list (i.e. the node that has the lowest f-value).9 if B is the goal node then10 Quit - a path has been found.11 end12 else13 Move the
urrent node to the
losed list and
onsider all of its neighbors.14 for Ea
h neighbor do15 if This neighbor is in the
losed list and the
urrent g value is lower then16 Update the neighbor with the new, lower, g value.17 Change the neighbor's parent to the
urrent node.18 end19 if This neighbor is in the Open list and the
urrent g value is lower then20 Update the neighbor with the new, lower, g value.21 Change the neighbor's parent to the
urrent node.22 end23 else24 Add the neighbor to the open list and set its g value.25 end26 end27 end28 end29the rules of Sokoban the general implementation of A* is not su�
ient to solve the path�ndingproblem. There are various reasons for this. One of them is is des
ribed in the following.The problem of solving the Sokoban puzzle
an be broken down in two subproblems. The �rstsubproblem is �nding the best path from the
urrent position of the man to a given diamond.The se
ond subproblem is �nding the best path that the man, while pushing the diamond, mustfollow to pla
e the diamond onto a goal area.At �rst the two problems seems to be similar, but due to the rules of Sokoban they are not.The di�eren
e is that the man, while not pushing a diamond, is allowed to move up, down,left, and right under the assumption that he is not moving through any obsta
les by doing so.At the point when the man has rea
hed a diamond, his maneuverability be
omes more limited,be
ause the man is only allowed to push the diamond. To over
ome these problems we havemade di�erent modi�
ations to the general A* algorithm. These modi�
ations are des
ribed inse
tion 2.1.
Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 20

Chapter 2Design and ImplementationStrategiesWhen de
iding on an implementation strategy, several fa
tors in the design of the game was
onsidered. First of all, there is really two elements in the game, that needs to be
ontrolled.First there is the robot, and se
ondly the diamonds.The diamonds are of
ourse the whole basis for evaluating the puzzle, sin
e the �nal goal is tomove the diamonds from their starting positions, and to the goal �elds. But on the other hand,it is the movements of the robot that is important in this proje
t. Both in terms of that it is therobot we
ontrol, and also
onsidering the fa
t that the robot should move in an optimal way.After some deliberation and several design and test implementations, a general algorithm forsolving the puzzle was agreed upon. The design separates the solving of the puzzle into two mainareas:1. �nding the optimal route the diamonds should be moved2. �nding the optimal route the robot must follow, to ensure the �rst requirement.The two requirements are
o-dependant, sin
e the optimal route for a diamond is of
oursedependant on where the robot is positioned, and where the robot
an move to. And the therobot's route is dependant on the diamonds positions, sin
e this di
tates where the robot
anmove.2.1 Design: Moving the DiamondsThe general strategy for �nding a optimal route for the diamonds involves using a tree datastru
ture for storing di�erent states of the map, in
luding the diamonds and the robot's position.For ea
h node in the tree a
omplete �situation� is stored, and all possible next states are found.These are stored as
hildren of the
urrent node, and then pro
essed later. Ea
h node in thetree is visited in a sear
h, until a solution is found. In addition to the tree, a list of situationsalready visited/investigated is kept, so that traversing identi
al sub-trees is avoided.A �situation� is the data stored in a node. This in
ludes the positions of all the diamonds,the robot, the
ost of the node and the parent of the node. When a node is pro
essed a Sokobanpuzzle is populated with the information from the node. What this pra
ti
ally means, is thatea
h node
ontains a
omplete Sokoban map with diamonds, goals, walls, the robot et
. This isused when �nding new nodes to add as
hildren. Looking at the map for the
urrent node beingpro
essed, all possible derivatives for the map is found. In theory this means four new nodesfor ea
h diamond, sin
e ea
h diamond
an be moved in four dire
tions, but pra
ti
ally thereare fewer nodes sin
e some of the diamonds moves will be blo
ked by walls or other diamonds.Additionally the robot needs to have a
lear path to the position behind the diamond, so that21

AI00 - Sokoban Solver 2.1. Design: Moving the Diamondsthe diamond
an be pushed. For ea
h of the new valid moves a new node is
reated and thediamond is moved to that new position. This means that a parent node has a number of
hildrennodes, and ea
h of these nodes have almost identi
al maps, ex
ept that in ea
h map one of thediamonds are moved to one of its possible new positions, relative to the map in the parent node.Additionally the
ost and the position of the robot is also updated to re�e
t the diamonds newpositions.2.1.1 Sokoban Solver: MainThe strategy for traversing the tree and adding new
hildren is shown as pseudo-
ode in algorithm2 Lines one to three is the pre
ondition, and on line four the main
onstru
t of the solver isAlgorithm 2: Main se
tion of the Sokoban Solver
lassSET initialnode.map to initialmap1 SET initialnode.parrent = null2 ADD initialnode to opennodes3 while opennodes not empty do4 SET
urrentnode to �rst node in opennodes5 REMOVE �rst node from opennodes6 if
urrentnode.map is the_solution then7 DO return the_solution8 end9 for ea
h diamond in
urrentnode.map do10 SET newValidPositions to CALL �ndNewValidPositionsForTheDiamond(diamond)11 for ea
h newValidPosition in newValidPositions do12 SET tempmap =
urrentnode.map13 CALL moveDiamond(tempmap, newValidPosition)14 SET tempnode.map = tempmap15 SET tempnode.parent =
urrentnode16 ADD tempnode to opennodes17 end18 end19 end20started. This while runs until either a solution is found, whi
h is
he
ked on line seven, or thereis no more open nodes. If no solution if found, and there is no more open nodes, the puzzle hasno solution that
an be found by this algorithm.Apart from the while loop the solver utilises two extra fun
tions here. On line 14 moveDiamond()is used to update a map with the new position of the diamond. On line 11 a
all to thefindNewValidPositions() is important for the solver, sin
e this
all is responsible for dete
tingnew positions the diamond
an be moved to. This is shown in more detail in subse
tion 2.1.2In the pseudo
ode shown in algorithm 2 some important parts are omitted for in
reasedreadability. The two most important parts are:1. ea
h node has a
ost asso
iated, and the open list is sorted a

ordingly2. a list of nodes visited is stored in a
losed list, and used to eliminate revisits of identi
alsub trees.The
ost of ea
h node is
al
ulated as with a
lassi
 A* algorithm. This means the
ost re�e
tsthe distan
e travelled from the starting position, and a heuristi
 fun
tion
al
ulates an additional
ost. The nodes are then sorted a

ordingly to the
ost, so that the
heapest node is at the �rstposition in the open list.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 22

AI00 - Sokoban Solver 2.1. Design: Moving the DiamondsThe se
ond omission is the
losed list. When ever a new node is
reated it's added to a
losedass well as the open list. Before a node is added to the open list, it is
he
ked if there is anidenti
al node in the
losed list. If that is the
ase, it is already in the open list, and there is noneed to add the node again.2.1.2 Sokoban Solver: Finding New PositionsWhen �nding new valid positions for a diamond, the pseudo
ode in �gure 3 is used. TheAlgorithm 3: The �ndNewValidPositions pseudo
odefor
urrentpostion.x - 1 to
urrentposition.x + 1 do1 for
urrentpostion.y - 1 to
urrentposition.y + 1 do2 if position not equals
urrentposition AND position not eqauls diagonal move then3 if position.type equals type.GROUND then4 robotPath = CALL getRobotPath(oppositeposition)5 if robotPath not equals null then6 ADD position AND robotPath to newnode7 end8 end9 end10 end11 end12 return listOfNewNodes13findValidPosition() method is
alled with the position of a diamond as argument. Then allpositions neighbouring that position are investigated for validity. The
ondition on line threeeliminates the starting position, whi
h the diamond are moving from, as well as the illegaldiagonal positions, whi
h are by default not valid positions in a Sokoban puzzle.The terrain of the position is then evaluate on line 4. The terrain must be valid for a diamond,whi
h means not a wall and not another diamond, or just basi
ally of type ground. The robotand the goals are all seen as type ground, sin
e the diamond
an indeed move to a �eld whereone of those two are pla
ed. The next
he
k involves the robots position and its path. On line�ve it is
he
ked if there is a path from the robot's
urrent position, and to the position where itmust go to push the diamond. It is important to re
ognise that it's not the path from the robotsstart position and to the diamond, or to the target �eld, but instead to the �eld that makesit possible to push the diamond. If the path is null the robot
annot move to the required�pushing position�, and this of
ourse invalidates the move of the diamond to the investigatedposition. This is
he
ked on line six. If the robot's move is valid, the position is reported validto the
alling fun
tion and the path of the robots is also returned.The reason for the path of the robot to be returned is that the path should be stored in thenew node
reated for this update of the tree. Later, when a solution is found, it is possible totraverse up the tree,
hild to parent, and extra
t the path the robot has driven. This path isthe exa
t path the physi
al robot must be instru
ted to take, to solve the
omplete puzzle fromstart to end.2.1.3 Sokoban Solver: The Closed ListIn a standard A* implementation the
losed list is used to ensure that the path �nding algorithmdoes not visit the same �elds over and over again. That spe
i�
 situation is not
omparable tothe Sokoban solver, whi
h does not enfor
e a demand that a spe
i�
 position
an only evaluatedon
e. Instead the Sokoban solver enfor
es that identi
al situations, where the exa
t position ofthe diamonds and the robot, is only investigated for possible derivative situations on
e.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 23

AI00 - Sokoban Solver 2.1. Design: Moving the DiamondsWhenever a node is investigated for possible sub-nodes /
hildren, all possible valid positionsfor the diamonds in the map are found. This
an be used as an identi�er for this parti
ularsituation. Say, if the robot after several moves, has
ompletely swit
hed the positions of twoof the diamonds, and is still only
apable of pushing the diamonds to the same positions asin the start situation. Then, the start and end situations are identi
al, and there is no reasonto investigate the end situation for further derivatives. Instead, the path �nder should returnone situation up the tree, to the
urrent situations parent node, and investigate that node foradditional derivative situations.2.1.4 Sokoban Solver: Cost Fun
tionsThe
ost fun
tions are used when
al
ulating whi
h
ost a
ertain situation should have, andthere by dire
t the sear
h algorithm to hopefully take an appropriate route down the tree.Two
osts are used in our A* implementation. First the general
ost of moving a diamondfrom �eld to �eld. This
ost is always the SokobanSolver
lass, sin
e moving a diamond fromone �eld to another, always amount to the same work. There is only one type of terrain, if theinvalid �elds like diamonds and walls are disregarded.The heuristi

ost fun
tion in the solver is used to ensure that the diamonds in general movetowards the goals. In this implementation this amounts to a fun
tion
al
ulating the distan
efrom ea
h diamond and to the
losest goal for that diamond. This ensures that the diamondsin general are moved towards the �elds, and not away. This heuristi
 is enough to solve theSokoban puzzle if only
onsidering the diamonds.An additional point of interest in Sokoban, and in this problem in parti
ular, is the movementof the robot. To in
rease the e�e
tiveness of the robot, an additional heuristi

ost is added to anode, whi
h
al
ulates the distan
e between the robot and the nearest diamond. This is used tomake the robot �prefer� pushing one diamond as long as possible, rather than
hanging ba
k andforth between the diamonds that brings the whole puzzle
loser to the solution. If this heuristi
is not used, the robot will always push the diamond that is nearest to the �nal solution, possiblymaking robot move a diamond one �eld, then go to another diamond and move that diamondone �eld, and �nally ba
k to the �rst diamond. The most optimal is of
ourse to move the �rstdiamond two pushes, and then move to se
ond diamond.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 24

Chapter 3Implementation of Sokoban SolverThe main part of the solver implementation is lo
ated in the SokobanSolver
lass, with someutility
lasses providing additional fun
tionality. One ex
eption is the SokobanMapReader
lasswhi
h both provides fun
tions for reading a puzzle map from a �le, and keeping it updated, butall
ontains the
riti
al
ode for �nding paths for the robot.3.1 The SokobanSolver
lassThe design of the Sokoban solver is dis
ussed in se
tion 2, and gives a general overview ofthe fun
tionality of the solver. In the next se
tions only te
hni
ally and fu
tionally importantse
tions of the implementation are des
ribed. The
omplete
ode for the SokobanSolver
lass arefound in the appendix.3.1.1 The Open ListThe A* algorithm used when solving the puzzle, di
tates the use of a list for storing all theposition, or in our
ase: maps, that needs to be investigated. The list should be sorted by
ost,so that the
heapest position or node is at the �rst position.In this implementation, where the open list
ontains nodes in our tree, it's the total
ost ofthat node, that di
tates its position in the list. The
ost of a node is
al
ulate with the
ostfun
tions dis
ussed in subse
tion 2.1.4. Ea
h node in the tree is an obje
t of the type Node, andthe
lass Node implements a
ompare method (implements the
omparable interfa
e). The openlist is implemented as a PriorityQueue, whi
h is a build-in Java queue, with automati
 sorting.This ensures that the
heapest node is always at the head of the queue.3.1.2 The Closed ListIn addition to the open list, whi
h is part of the A* design, our implementation utilises a
losedlist, whi
h is des
ribed in se
tion 2.1.3.The
losed list is implemented as a double hash map, where the other hash map
ontainsthe diamonds positions, while the inner
ontains the valid positions for the diamonds at that
on�guration.To ensure
orre
t hashing and re
ognition of situations where diamonds have ex
hangedpla
e, all positions are pla
ed in a sorted list. This list makes sure that the positions it
ontainare sorted in a spe
i�
 way, so that if two diamonds have ex
hange positions, this is
orre
tlyper
eived as an identi
al map, as when the diamonds were at their original positions.When a
hildren is added to a node exa
tly one diamond has moved. This new list of positionsis added to the outer hash map, if it is not already added. For the new map in the
hild node,all valid positions for the diamonds are then found, and added to a sorted list, in the same wayas with the diamonds. 25

AI00 - Sokoban Solver 3.2. The SokobanMapReader
lassNow it is
he
ked to see if this sorted list of valid positions, are already held in the inner hashmap. If that is the
ase, a exa
tly similar situation has already been found by an earlier sear
h,and there is no reason to
reate new
hildren in the tree for these positions. The path �nder
an
lose this sub-tree, and go ba
k to the parent node, and try another
hild. If the list is not foundin the inner hash map, it is added and new sub nodes are
reated for ea
h of the valid positions.3.2 The SokobanMapReader
lassThe SokobanMapReader
lass implements a parser using a bu�ered reader and the S
anner
lassto read and parse a Sokoban map in the format given in this
ourse. It outputs a Sokoban-MapReader obje
t whi
h the SokobanSolver
lass
an use for solving the puzzle.In addition it
ontains the robot path �nding implementation, used when querying the robotif there is a path from the
urrent position and to a given position.3.3 The SokobanSortedList
lassThis
lass is important for the fun
tionality of the
losed list implementation in the SokobanSolver
lass. It is an extension to the normal ArrayList
lass, overriding the standard add()method witha
ustomised version. In the SokobanSortedList
lass the add method both adds the argumentgiven to the list, but it also pro
eeds to sort that list, thus ensuring a spe
i�
 order of its elements.In parti
ular that the �smallest� positions are found �rst in the list, with in
reasing positionsfollowing.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 26

Chapter 4Robot Modi�
ations4.1 Testing on The Final CourseFor the initial
onstru
tion and testing of the robot, a generi
 test
ourse was used. In orderto adapt the robot for the
ourse on whi
h the
ompetition was held, a number of tests wasperformed. The �nal
ourse, whi
h was used for the
ompetition,
onsited of two thin melaminewood plates. The lines that made up the
ourse was made of the same type tape as on the test
ourse.The aim was to test the same type of movements that were tested in
hapter 3 on page 12.Sin
e the
ompetition
ourse was more
omplex, than the test
ourse, some of the tests di�eredsomewhat, but the goal was the same. As des
ribed in 4.2 page 27 some modi�
ations were madeto the robot. After these were made, the robot performed the same as on the test
ourse, withregard to a

ura
y and stability.4.1.1 Observed Problems Prior to Modi�
ationsAs the �nal
ourse
onsisted of two separate plates there was a interse
tion between the plates,and this
aused several problems as it was not
ompletely level. When
rossing the interse
tion,the tin
an (representing the diamond from the game) would often get
aught in the tape edgeat the interse
tion, whi
h made the
an fall over.The tape marking the
ourse would also rise up in a bump
ausing light to be re�e
ted ina manner su�
iently di�erent from the average
ondition, that it would
ause wrong sensorreadings. In several
ases the robot would suddenly leave the
ourse, for no apparent reason.4.1.2 Method of Problem SolvingIt was often not possible to determine why an error happened, as it was often di�
ult to re
reatethe events that led to the error. A number of tests with minor modi�
ations to the robot weretherefor ne
essary, amounting to a pro
ess of trial and error.The obje
t was to make the robot behaviours work at least as well on the
ompetition
ourseas on the test
ourse. Also, as the robot had to parti
ipate in a timed
ompetition, it wasimportant that the robot was optimised to run at the highest possible speed under the given
onditions.4.2 Stru
tural Modi�
ations to the Robot.4.2.1 Stabilising the RigIn early tests the robot would �bob� the front end up and down when stopping after drivingfast forward. One solution was to make the robot drive slower, but that would lessen the27

AI00 - Sokoban Solver 4.3. Modi�
ations to Movement patterns
han
es of winning the
ompetition. A better solution was to me
hani
ally stop the bobbingfrom happening, whi
h a
hieved by pla
ing a number of support points immediately in front ofthe sensors. A positive side e�e
t of this was that tin
an stopped hanging in the tape at theinterse
tion of the two plates.4.2.2 En
losing the SensorsInitial tests were made in a room with relatively dark lighting
onditions. When testing underother lighting
onditions, it was made
lear that some
alibration of the sensor thresholds werene
essary. It was not possible to �nd thresholds that was valid under all lighting
onditions.Rather than make adaptive sensor adjustment a
hoi
e was made to
ontrol the
onditions underwhi
h the sensors operated.This was a
hieved by en
losing the sensors in a shroud, that blo
ks exterior light sour
es onthree sides. On the fourth side an additional light sour
e (LED bi
y
le front lamp) was pla
ed.This gave stable light
onditions, thus alleviating the need to
hange sensor settings. Also, thisremoved the problem of re�e
tions from the tape at the interse
tion.4.3 Modi�
ations to Movement patternsModi�
ations were required in order to make some of the movements, that were possible on thetest
ourse, possible on the
ompetition
ourse. On the test
ourse the lines were whole, that isthere were no gaps. On the
ompetition
ourse the lines were broken to simulate a wall in thesokoban game. Unfortunately the lines were in many
ases so short that the sensors on the robot�missed� them when making a 180 degrees turn. This was resolved in two parts. First some ofthe shortest lines were made longer on the
ourse. Se
ond the behaviour of the 180 degree turnwas modi�ed. The modi�
ations were made not to the method used for making the turn, butrather to the
onstants used in the methods. This was very mu
h a
ase of trial and error, beforethe optimal values were found.The other speed settings, forward, reverse and turn, were also optimised by trial and error.The aim was to get the robot to move as fast as possible and still run the
ourse
orre
tly.4.4 Test of The Path�nder SolutionThe solution returned by the path �nder is not the same format as the instru
tions the robotneeds in order to move
orre
tly. Additional instru
tions are required in order to pla
e the
anset
. The solution from the path �nder, was
onverted to movement instru
tions via a purposewritten java program that pads the solution with the required extra instru
tions. This was theninserted manually into the NXC
ode, before
ompilation.The
al
ulated solution was tested simply by letting the robot run the
ourse 6 - 7 times,and there were no errors. Simultaneously the robot was stress tested, by harassing the sensor
onditions, e.g. by �ashing lights or shaking the
ourse. This revealed several of the errorsthat were addressed in the previous se
tion. After the modi�
ations were made, an additional 3�awless passes were made, despite
ontinued harassment of the sensor
onditions.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 28

Chapter 5Improvements of the Path�nder5.1 Path-�nding ImprovementsThis se
tion dis
usses possible improvements to the path �nding implementation used to solvethe Sokoban puzzle. We have not implemented any of these strategies, but if the implementationshould be improved or extended further some of the following
onsiderations might be worthimplementing.5.2 Review Of Existing Sokoban implementationsThe most notably proje
t about Sokoban and general path �nding algorithms that we have beenable to �nd, is the Rolling Stone program and the a

ompanying papers des
ribing the evolutionof the program. The proje
t started as an extension of a Ph.D. proje
t in path �nding and motionplanning in
omputer games, and later turned into resear
h proje
t running over a period of 3years. The authors of Rolling Stone des
ribes progress of the program as: "The developmente�ort equates to a full-time Ph.D. student, a part-time professor, one summer student, andvaluable feedba
k from many people."In the following subse
tions a number of strategies used in the Rolling Stone program aredes
ribed. In the heading of ea
h subse
tion the revision number of the program and the numberof Sokanban problems the revision was able to solve is given. The goal of the Rolling Stoneprogram was to solve as many problems as possible in a test suite of 90 Sokoban puzzles.5.2.1 Minimum Mat
hing Lower Bound (R0, 0 solved)A* with a simple lower bound has no hope of �nding a solution to any of the problems in the testsuite. An obvious lower bound is the distan
e of ea
h diamond to its
losest goal, a Manhattandistan
e for Sokoban. However, the gap between the lower bound value and the a
tual solutionlength for any non-trivial Sokoban problem so large that the number of A* iterations, and thustheir respe
tive tree sizes, make solving these problems e�e
tively impossible. By adding a lowerbound to their implementation they were still not able to solve any of problems in the test suite.To obtain a better admissible estimate for the distan
e of a diamond to a goal, a minimum-
ost algorithm is used. The mat
hing assigns ea
h diamond to a goal and returns the total(minimum) distan
e of all diamonds to their goals. The minimum
ost argumentation algorithmis O(N3), where N is the number of diamonds. During the sear
h the lower bound only needsto be updated, whi
h requires �nding negative-
ost
y
les, and is therefore less expensive to
ompute. With the minimum mat
hing lower bound strategy the program was still not able tosolve any of the maps in the test suite.
29

AI00 - Sokoban Solver 5.2. Review Of Existing Sokoban implementations5.2.2 Transposition Table (R1, 5 solved)Even though the sear
h spa
es in Sokoban are generally graphs, most sear
h algorithms treatthem as trees. If a state
an have several prede
essors, this
an lead to dupli
ate work. the sear
h
ould revisit nodes and even entire sub-trees several times. These "transpositions" or
y
les aredete
ted using a transposition table in whi
h useful information about previously visited nodesis stored. Before expanding a node, the transposition table is
onsulted, and if valid informationis found, it is used to potentially
urtail the sear
h. Adding transposition tables allowed theirprogram to solve 5 problems in the test suite.5.2.3 Move Ordering (R2, 4 solved)Instead of visiting su

essors of a position in an arbitrary order, one
an try to look at "good"su

essors �rst. Move (or su

essor) ordering is not used in the best-�rst sear
hes; the algorithmitself provides for a global ordering of the alternatives. In depth-�rst and breadth-�rst sear
hes,move ordering
an lead to e�
ien
y gains be
ause goals are found earlier (left in the tree) ratherthan later (right in the tree). For A*, ordering moves at interior nodes makes no di�eren
e to thesear
h, ex
ept for the �nal iteration. Sin
e the �nal iteration is aborted on
e a solution is found,�nding a solution early in this iteration
an signi�
antly improve the performan
e. After addingmove ordering to their program, they were only able to solve 4 of the test problems. A

ordingto their do
umentation, they
ategorise this as bad lu
k and explain that move ordering showsup as a valuable
ontribution after other features are added to the program.5.2.4 Deadlo
k Table (R3, 5 solved)In Sokoban it is possible to bring the puzzle in a deadlo
k state - that is a stat in whi
h thepuzzle be
omes unsolvable. For instan
e pushing a diamond into a
orner �eld that is not a goalarea, makes every
onse
utive move irrelevant, be
ause it is impossible for the man to bring thediamond ba
k into the game without pulling it, whi
h is an illegal operation in Sokoban. Theimplementation of Rolling Stone uses so
alled deadlo
k tables, where an o�-line sear
h is usedto enumerate all possible diamond/wall pla
ements in a 4x5 region to determine if a deadlo
k ispresent. These results are stored in deadlo
k tables. During the A* sear
h, the table is queriedto see if the
urrent move leads to a lo
al deadlo
k.In the A* sear
h, before making a move, the program queries the deadlo
k table to see if themove would result in a known deadlo
k. If so, the move is not
onsidered further. A

ording tothe designers of Rolling Stone, the bran
hing fa
tor is redu
ed by 20% by using deadlo
k tables.With deadlo
k tables the program where able to solve 5 of the test problems.5.2.5 Tunnel Ma
ros (R4, 6 solved)The sear
h algorithms dis
ussed so far treat all moves equally. After making a move, all legalmoves are
onsidered as su

essors. These algorithms are therefore treating all moves as if theywere unrelated. The method of ma
ro moves is an attempt to group related atomi
 a
tions intohigher level
omposite a
tions: ma
ros.A tunnel is the part of a maze where the manoeuvrability of the man is restri
ted to a widthof one. Sin
e there
an be at most one diamond in a tunnel without
reating an immediatedeadlo
k, the remaining tunnel moves
an be
ompleted without loss of generality of optimality.If a tunnel is
omposed of arti
ulation squares, the tunnel is
alled a one-way tunnel. Wheneverthe move generator
reates a move into a one-way tunnel, the move is substituted with the ma
ropushing the diamond all the way through the tunnel. This eliminates all the inter-leavings withother legal moves.Tunnel ma
ros result in one additional problem being solved, bringing the
ount at a total of6 solved problems from the test suite.Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 30

AI00 - Sokoban Solver 5.2. Review Of Existing Sokoban implementations5.2.6 Goal Ma
ros (R5, 17 solved)Many of the Sokoban problems have all the goal squares grouped together in rooms. Thesegoal areas are usually a

essible through only a few square entran
es. One
an de
ompose theproblem of solving a maze into:
• how to get ea
h diamond to one of the entran
es, and
• how to pa
k/arrange the diamonds into the goal areas.Often these sub-goals
an be solved independently, thus redu
ing the sear
h spa
e. This isa
hieved by de�ning a goal area, marking its entran
es, and pre
omputing the order in whi
hgoal squares are �lled without introdu
ing deadlo
k in the goal area. During the sear
h, if amove is generated that pushes a diamond onto the entran
e square of a goal area, that moveis repla
ed with a goal ma
ro that generates a sequen
e of moves to push the diamond dire
tlyto an appropriate goal square. By introdu
ing goal ma
ros the program was able to solve 17problems.5.2.7 Goal Cuts (R6, 24 solvedThe goal-ma
ro heuristi
 eliminates all alternatives moves from
onsideration when a goal ma
rois present. The reason for this is that if it is possible to push diamond to its �nal destination,it will not a�e
t other moves and they
an be ignored. The same reasoning
an be appliedto the previous move: the move that pushed the diamond to the square from whi
h it will be"ma
ro"-pushed to the goal square. Goal
uts do exa
tly that re
ursively further up the tree: ifa diamond is pushed to a goal with a goal ma
ro at the end without interleaving other diamondpushes, all alternatives to pushing that diamond are deleted from the move list. With goal
utsthey were able to solve 24 problems from the test suite.5.2.8 Pattern Sear
h (R7, 48 solved)Pattern sear
hes �nd patterns of diamonds that prove that the lower bound is in error. Theerrors
ould be small, improving the lower bound by as little as 2, or as mu
h as ∞ in the
aseof a deadlo
k. All dis
overed patterns are saved and used throughout the sear
h. If a patternmat
hes a subset of diamonds in a position, then the penalty asso
iated with that pattern isadded to the lower bound estimate for the position. In e�e
t, the program learns lower boundpenalty patterns and uses them to dynami
ally improve the lower bound fun
tion.Sokoban pattern sear
h two di�erent mazes are used: the original maze, the data stru
tureused by the A* sear
h, and the test maze whi
h will be used for the pattern sear
hes. A patternsear
h iterates on the number of diamonds in the test maze. By de�nition, a deadlo
k is a
on�guration of diamonds su
h that not all of the diamonds
an rea
h a goal. If a move A − Bis made, it might introdu
e a deadlo
k. If this deadlo
k was not present before the move, thenthe moved diamond, now on square B, must be part of that pattern. This is the initial diamondin
luded into the test maze for the pattern sear
h. A spe
ial version of A* tailored to be e�
ientat pattern sear
hing, is
alled to solve the test maze. It either returns in failure (no solution,hen
e deadlo
k), or it �nds a solution. In the latter
ase, the number of pushes in the solutionmay disagree with that determined by the minimum mat
hing lower bound introdu
ed in revision1. If so the lower bound fun
tion is in error and
an be improved.By introdu
ing pattern sear
h into Rolling Stone, the designers were able to solve 48 of the90 problems in the test suite. Pattern sear
h was the strategy that gave most in
rease in thenumber of Sokoban puzzles the program was able to solve.5.2.9 Relevan
e Cut (R8, 50 solvedAnalysis of the trees built by an A* sear
h qui
kly reveals that the sear
h algorithm
onsidersmove sequen
es that no human would ever
onsider. Even
ompletely unrelated moves areBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 31

AI00 - Sokoban Solver 5.2. Review Of Existing Sokoban implementationstested in every legal
ombination - all in an e�ort to prove that there is no solution for the
urrent threshold. How
an a program mimi
 an "understanding" of relevan
e? The designersof Rolling Stone suggest that a reasonable approximation of relevan
e is in�uen
e. If two movesdo not in�uen
e ea
h other, then it is unlikely that they are relevant to ea
h other. If a programhad a good "sense" of in�uen
e, it
ould assume that in a given position all previous movesbelong to a (unknown) plan of whi
h a
ontinuation
an only be a move that is relevant - in theapproximation, is in�uen
ing whatever was played previously. Relevan
e
uts eliminate movesfrom the sear
h that appear to be irrelevant to the pre
eding sequen
e of moves. With relevan
e
uts implemented, Rolling Stone was able to solve 50 problems.5.2.10 Overestimation (R9, 54 solvedTo ensure optimality of solutions produ
ed by A*-based algorithms, the heuristi
 has to beadmissible. This limits the
hoi
e of knowledge that
an be used. Even if some knowledge
orrelates well with the distan
e to the goal, but there is a
han
e that it overestimates, it
annotbe used be
ause the solution optimality would not be guaranteed. This shows that optimalityhas it pri
e. Instead of �tting the heuristi
 distan
e to a solution h as
losely as possible to thea
tual distan
e h∗, we are restri
ted to
reating a lower bound. The error of su
h a lower-boundfun
tion is often larger than a fun
tion that is allowed to o

asionally overestimate. The largerthe error of the lower-bound fun
tion, the less e�
ient the sear
h. With overestimation theywere able to solve 54 of the test problems.5.2.11 Rapid Random Restart (R10, 57 solvedIn the implementation of Rolling Stone a strategy
alled rapid random restart (RRR) is used.RRR assumes that by varying parameters to the solution algorithm (here sear
h), it is possibleto redu
e the solution time dramati
ally. Therefore, instead of using all the available time withone parameter setting, RRR repeatedly aborts the sear
h after a given e�ort limit and restartsit with di�erent (random) parameters.In Rolling Stone, RRR is used to interrupt an iteration and restart it with a di�erent moveordering s
heme. With RRR 57 of the 90 problems
ould be solved.

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 32

Part IIIAppendixes

33

Appendix ACodeA.1 NXC Code
� �1 #in
lude "NXCDefs . h"3 #define POWER 70#define REVERSE 405 #define POWERTURN 60#define POWERROTATE 6079 #define TURN_PCT 20#define LIGHT_THRSHOLD 4511 #define TURN_ROTATION 4013 #define MOTOR_RIGHT OUT_A#define MOTOR_LEFT OUT_B15 #define MOTOR_BOTH OUT_AB17 // De f i n i t i on s o f the d i f f e r e n t motions o f the robo t#define CASE_S 019 #define CASE_L 1#define CASE_R 221 #define CASE_C 3#define CASE_B 423 #define CASE_TR 5#define CASE_TL 625 #define CASE_STOP −127 mutex right ;mutex left ;29 int LIGHT_LEFT = 0 ;31 int LIGHT_RIGHT = 0 ;int LIGHT_FRONT = 0 ;33 int left_run = 1 ;35 int right_run = 1 ;int left_run_ba
k = 0 ;37 int right_run_ba
k = 0 ;int
an_run = 0 ;39 34

AI00 - Sokoban Solver A.1. NXC Codeint run_speed=60;41 int disp_
md ;4345 /∗ ←֓
∗∗ ←֓

∗ Manually de f ined
ommand s t r i n g f o r t e s t i n g47 ∗∗∗ ←֓

∗/// i n t
mds [℄ = {CASE_S,CASE_B,CASE_B};49 int
mds [℄ = ←֓{1 , 2 , 0 , 2 , 3 , 2 , 3 , 5 , 2 , 0 , 3 , 2 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 1 , 3 , 5 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 2 , 0 , 2 , 1 , 0 , 3 , 2 , 1 , 0 , 2 , 2 , 0 , 0 , 0 , 0 , 3 , 5 , 0 , 0 , 1 , 0 , 0 , 2 , 2 , 3 , 2 , 0 , 0 , 2 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 3 , 2 , 0 , 2 , 0 , 0 , 1 , 2 , 2 , 0 , 3 , 5 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 3 , 5 , 0 , 0 , 0 , 2 , 0 , 1 , 0 , 1 , 1 , 3 , 1 , 2 , 0 , 0 , 0 , 0 , 2 , 0 , 2 , 0 , 0 , 0 , 1 , 2 , 2 , 3 , 5 , 0 , 0 , 1 , 1 , 0 , 3 , 1 , 2 , 2 , 0 , 0 , 3 , 2 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 3 , 5 , 1 , 1 , 0 , 3 , 1 , 3 , 2 , 0 , 2 , 2 , 3 } ;51 // i n t
mds [℄ ={CASE_L, CASE_R, CASE_S, CASE_R, CASE_C, CASE_R, CASE_C, ←֓CASE_TL, CASE_R, CASE_S, CASE_C, CASE_R, CASE_L, CASE_S, CASE_L, ←֓CASE_S, CASE_S, CASE_L, CASE_S, CASE_S, CASE_S, CASE_C, CASE_L, ←֓CASE_C, CASE_TL, CASE_R, CASE_S, CASE_S, CASE_S, CASE_R, CASE_S, ←֓CASE_S, CASE_R, CASE_S, CASE_R, CASE_L, CASE_S, CASE_C, CASE_R, ←֓CASE_L, CASE_S, CASE_R, CASE_R, CASE_S, CASE_C, CASE_R, CASE_S, ←֓CASE_S, CASE_R, CASE_R, CASE_C, CASE_R, CASE_S, CASE_S, CASE_R, ←֓CASE_L, CASE_S, CASE_L, CASE_L, CASE_S, CASE_S, CASE_S, CASE_C, ←֓CASE_R, CASE_S, CASE_R, CASE_S, CASE_S, CASE_C, CASE_L, CASE_R, ←֓CASE_R, CASE_S, CASE_C, CASE_TL, CASE_L, CASE_S, CASE_S, CASE_S, ←֓CASE_L, CASE_S, CASE_L, CASE_S, CASE_S, CASE_S, CASE_C, CASE_TL, ←֓CASE_S, CASE_S, CASE_S, CASE_R, CASE_S, CASE_L, CASE_S, CASE_L, ←֓CASE_L, CASE_C, CASE_L, CASE_R, CASE_S, CASE_S, CASE_S, CASE_S, ←֓CASE_R, CASE_S, CASE_R, CASE_S, CASE_S, CASE_S, CASE_L, CASE_R, ←֓CASE_R, CASE_C, CASE_TR, CASE_S, CASE_S, CASE_L, CASE_L, CASE_S, ←֓CASE_C, CASE_L, CASE_R, CASE_R, CASE_S, CASE_S, CASE_C, CASE_R, ←֓CASE_L, CASE_S, CASE_L, CASE_S, CASE_S, CASE_L, CASE_S, CASE_S, ←֓CASE_S, CASE_S, CASE_L, CASE_S, CASE_C, CASE_TL, CASE_S, CASE_R, ←֓CASE_R, CASE_C, CASE_R, CASE_L, CASE_L, CASE_C, CASE_R, CASE_S, ←֓CASE_R, CASE_R, CASE_C, CASE_STOP};//run onee i gh ty53 // i n t
mds [℄ = {CASE_S,CASE_S,CASE_TR};55 //run in e i g h t s// i n t
mds [℄ = {CASE_S,CASE_L,CASE_S,CASE_R,CASE_S,CASE_R,CASE_S,CASE_R, ←֓CASE_S,CASE_R,CASE_S,CASE_L,CASE_S,CASE_L,CASE_S,CASE_L};57 /∗ End o f
ommans s t i n g d e f i n i t i o n s ∗/59 int
md_
ounter = −1;61 /∗ ←֓
∗∗ ←֓63 ∗ In the f o l l ow i n g we de f i n e f un
 t i on s t ha t f un
 t i on s t ha t enab l e s or ←֓d i s a b l e s

∗ behav iour s . Note65 ∗∗∗ ←֓

∗/67 /∗ ∗∗∗
∗69 ∗ Routine : d isab leRunBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 35

AI00 - Sokoban Solver A.1. NXC Code
∗ Parameters : None71 ∗ Return : noth ing
∗ Purpose : D i s a b l e s the autonomous forward movement r ou t i n e s .73 ∗ And s t op s the motors
∗75 ∗∗∗/void disableRun () {77 A
quire (left) ;left_run = 0 ;79 Release (left) ;81 A
quire (right) ;//PlayTone (440 ,1000) ;83 right_run = 0 ;Release (right) ;85 Off (MOTOR_RIGHT) ;87 Off (MOTOR_LEFT) ;}89 /∗ ∗∗∗91 ∗

∗ Routine : enableRun93 ∗ Parameters : i n t
∗ Return : noth ing95 ∗ Purpose : enab l e s the autonomous forward movement r ou t i n e s .
∗ The motors are not s t a r t e d here , t h i s on ly enab l e s97 ∗ t he
 on t r o l t a s k
∗99 ∗∗∗/void enableRun (int power) {101 run_speed = power ;left_run = 1 ;103 right_run = 1 ;}105 /∗ ∗∗∗107 ∗

∗ Routine : disableRunBa
k109 ∗ Parameters : None
∗ Return : noth ing111 ∗ Purpose : D i s a b l e s the runba
k mode where we d r i v e ba
k one
∗ f i e l d a f t e r p l a
 i n g the
an .113 ∗ The motors are s toped .
∗115 ∗∗∗/void disableRunBa
k () {117 A
quire (left) ;left_run_ba
k = 0 ;119 Release (left) ;121 A
quire (right) ;right_run_ba
k = 0 ;123 Release (right) ;125 Off (MOTOR_RIGHT) ;Off (MOTOR_LEFT) ;127 }Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 36

AI00 - Sokoban Solver A.1. NXC Code129 /∗ ∗∗∗
∗131 ∗ Routine : enableRunBa
k
∗ Parameters : None133 ∗ Return : noth ing
∗ Purpose : Enables the behaviour where we move a f i e l d ba
k135 ∗ a f t e r having p la
ed a
an .
∗137 ∗∗∗/void enableRunBa
k () {139 left_run_ba
k = 1 ;right_run_ba
k = 1 ;141 }143 /∗ ∗∗∗145 ∗

∗ Routine : d i sab l eFron tSensor147 ∗ Parameters : None
∗ Return : noth ing149 ∗ Purpose : Stops the behav iou t used wh i l e moving a
an .
∗ While in t h i s behaviour we use a a d i t i o n a l sensor151 ∗ inorder to s top p r e
 i s e l y when the
an i s on the
∗
ros s o f two i n t e r s e
 t i n g l i n e s .153 ∗

∗∗∗/155 void disableFrontSensor () {
an_run = 0 ;157 }159 /∗ ∗∗∗
∗161 ∗ Routine : enab leFrontSensor
∗ Parameters : None163 ∗ Return : noth ing
∗ Purpose : S t a r t s t he behaviour t ha t w i l l ensure t ha t the165 ∗ robo t p l a
 e s the
an o b j e
 t a

u ra t e l y .
∗ While t h i s behaviour i s in e f f e
 t we use an167 ∗ a d i t i o n a l sensor inorder to s top p r e
 i s e l y when
∗ t he
an i s on the
ros s o f two i n t e r s e
 t i n g l i n e s .169 ∗

∗∗∗/171 void enableFrontSensor () {
an_run = 1 ;173 }175 /∗ ∗∗∗177 ∗

∗ Routine : r unS t r a i g h t179 ∗ Parameters : i n t
∗ Return : noth ing181 ∗ Purpose : Drives forward a f i x e d amount , us ing the g i ven
∗ power s e t t i n g .183 ∗

∗∗∗/185 void runStraight (int power) {//RotateMotor (OUT_AB,POWER,TURN_ROTATION) ;187 RotateMotorEx (MOTOR_BOTH , power , TURN_ROTATION , 0 , true , fa l se) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 37

AI00 - Sokoban Solver A.1. NXC Code}189 /∗ ∗∗∗191 ∗

∗ Routine : runRight193 ∗ Parameters : i n t
∗ Return : noth ing195 ∗ Purpose : Turns the robo t to the r i g h t and d r i v e s up to
∗ t he next jun
 t i on197 ∗

∗∗∗/199 void runRight (int power) {runStraight (power) ;201 i f (LIGHT_LEFT < LIGHT_THRSHOLD) {//PlayTone (220 ,1000) ;203 }RotateMotor (MOTOR_LEFT , power , 1 8 0) ;205 while (LIGHT_RIGHT > LIGHT_THRSHOLD) {//OnFwd(MOTOR_LEFT, power) ;207 OnFwdSyn
 (OUT_AB , power , 1 0 0) ;}209 }211 /∗ ∗∗∗
∗213 ∗ Routine : runRightRight
∗ Parameters : i n t215 ∗ Return : noth ing
∗ Purpose : Turns the robo t 180 deg . tu rn ing to the r i g h t and217 ∗ d r i v e s up to the next jun
 t i on us ing the g i ven
∗ power .219 ∗

∗∗∗/221 void runRightRight (int power) {runStraight (power) ;223 // i f (LIGHT_LEFT < LIGHT_THRSHOLD){//PlayTone (220 ,1000) ;225 //}RotateMotor (MOTOR_LEFT , power , 1 8 0) ;227 OnFwdSyn
 (OUT_AB , power , 1 0 0) ;while (LIGHT_RIGHT > LIGHT_THRSHOLD) {229 //PlayTone (220 ,1000) ;}231 Off (OUT_AB) ;233 RotateMotor (MOTOR_LEFT , power , 1 8 0) ;OnFwdSyn
 (OUT_AB , power , 1 0 0) ;235 while (LIGHT_RIGHT > LIGHT_THRSHOLD) {//237 }Off (OUT_AB) ;239 }241 /∗ ∗∗∗
∗243 ∗ Routine : runLef t
∗ Parameters : i n t245 ∗ Return : noth ing
∗ Purpose : Turns the robo t to the l e f t and d r i v e s up toBrian Horn, Bjørn Grønbæk & Jon Kjærsgaard 38

AI00 - Sokoban Solver A.1. NXC Code247 ∗ t he next jun
 t i on
∗249 ∗∗∗/void runLeft (int power) {251 runStraight (power) ;// i f (LIGHT_LEFT < LIGHT_THRSHOLD){253 //PlayTone (440 ,1000) ;//}255 RotateMotor (MOTOR_RIGHT , power , 1 8 0) ;while (LIGHT_LEFT > LIGHT_THRSHOLD) {257 //OnFwd(MOTOR_RIGHT, power) ;OnFwdSyn
 (OUT_AB , power ,−100) ;259 }261 }263 /∗ ∗∗∗
∗265 ∗ Routine : runLe f tLe f t
∗ Parameters : i n t267 ∗ Return : noth ing
∗ Purpose : Turns the robo t 180 deg . tu rn ing to the l e f t and269 ∗ d r i v e s up to the next jun
 t i on us ing the g i ven
∗ power .271 ∗

∗∗∗/273 void runLeftLeft (int power) {runStraight (power) ;275 // i f (LIGHT_RIGHT < LIGHT_THRSHOLD){//PlayTone (440 ,1000) ;277 //}RotateMotor (MOTOR_RIGHT , power , 1 8 0) ;279 OnFwdSyn
 (OUT_AB , power ,−100) ;while (LIGHT_LEFT > LIGHT_THRSHOLD) {281 //OnFwd(MOTOR_RIGHT, power) ;}283 Off (OUT_AB) ;285 RotateMotor (MOTOR_RIGHT , power , 1 8 0) ;OnFwdSyn
 (OUT_AB , power ,−100) ;287 while (LIGHT_LEFT > LIGHT_THRSHOLD) {//OnFwd(MOTOR_RIGHT, power) ;289 }Off (OUT_AB) ;291 }/∗293 void runLe f tLe f t (i n t power) {runS t r a i g h t (power) ;295 i f (LIGHT_LEFT < LIGHT_THRSHOLD){//PlayTone (440 ,1000) ;297 }RotateMotor (MOTOR_RIGHT, power ,180) ;299 whi l e (LIGHT_LEFT > LIGHT_THRSHOLD){//OnFwd(MOTOR_RIGHT, power) ;301 OnFwdSyn
 (OUT_AB, power ,−100) ;}303 RotateMotor (MOTOR_RIGHT, power ,180) ;wh i l e (LIGHT_LEFT > LIGHT_THRSHOLD){305 //OnFwd(MOTOR_RIGHT, power) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 39

AI00 - Sokoban Solver A.1. NXC CodeOnFwdSyn
 (OUT_AB, power ,−100) ;307 }}309 ∗/311 /∗ ∗∗∗
∗313 ∗ Routine : genNxtCmd
∗ Parameters : n u l l315 ∗ Return : i n t
∗ Purpose : Returns the next
ommand to be exe
u t ed317 ∗ Stops a f t e r exe
u t ing the whole l i s t in
mds [℄
∗319 ∗∗∗/int genNxtCmd () {321 //
md_
ounter = (
md_
ounter + 1) % ArrayLen (
mds) ;323
md_
ounter++;325 i f (
md_
ounter > (ArrayLen (
mds)−1)) {
md_
ounter−−;327 return CASE_STOP ;}329 else return
mds [
md_
ounter ℄ ;331 // re turn
mds [
md_
ounter ℄ ;333 }335 /∗ ∗∗∗
∗337 ∗ Routine : runInEights
∗ Parameters : i n t339 ∗ Return : i n t
∗ Purpose : Test rou t ine used wh i l e d r i v i n g the robo t in341 ∗ f i g u r e e i g h t s n t imes
∗343 ∗∗∗/int runInEights (int n) {345
md_
ounter++;for (int i = 0 ; i < n ; i++){347 return
mds [
md_
ounter ℄ ;}349 }351 /∗ ∗∗∗
∗353 ∗ Routine : readSensors
∗ Parameters : n u l l355 ∗ Return : void
∗ Purpose : Cout inous ly p o l l t he sensor s and s t o r e t h e i r357 ∗ va l u e s in g l o b a l v a r i a b l e s
∗359 ∗∗∗/task readSensors () {361 while (true) {LIGHT_RIGHT = Sensor (S1) ;363 LIGHT_LEFT = Sensor (S2) ;LIGHT_FRONT = Sensor (S3) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 40

AI00 - Sokoban Solver A.1. NXC Code365 }}367 /∗ ∗∗∗369 ∗

∗ Routine : runningWithCan371 ∗ Parameters : n u l l
∗ Return : i n t373 ∗ Purpose : Sp e
 i a l
 on t r o l f o r moving wi th a
an/ jewe l ,
∗ enab l e s the robo t to a
u ra t e l y p la
e a j ewe l /
an375 ∗ on the i n t e r s e
 t i o n o f two l i n e s , by us ing the
∗ ex t ra f r on t sensor .377 ∗

∗∗∗/379 task runningWithCan () {while (true) {381 i f (
an_run) {i f (LIGHT_FRONT < LIGHT_THRSHOLD) {383 //PlayTone (440 ,1000) ;disableRun () ;385 disableFrontSensor () ;387 enableRunBa
k () ;}389 }}391 }393 task motorRight () {395 while (true) {while (left_run) {397 A
quire (left) ;//PlayTone (220 ,10) ;399 i f (LIGHT_RIGHT > LIGHT_THRSHOLD)OnFwd (MOTOR_RIGHT , run_speed) ;401 else {Off (MOTOR_RIGHT) ;403 }Release (left) ;405 }//Off (MOTOR_RIGHT) ;407 }}409 task motorLeft () {411 while (true) {while (right_run) {413 A
quire (right) ;//PlayTone (220 ,10) ;415 i f (LIGHT_LEFT > LIGHT_THRSHOLD)OnFwd (MOTOR_LEFT , run_speed) ;417 else {Off (MOTOR_LEFT) ;419 }Release (right) ;421 }//Off (MOTOR_LEFT) ;423 }Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 41

AI00 - Sokoban Solver A.1. NXC Code}425 task motorRightBa
k () {427 while (true) {while (left_run_ba
k) {429 A
quire (left) ;i f (LIGHT_RIGHT > LIGHT_THRSHOLD)431 OnFwd (MOTOR_LEFT ,−REVERSE) ;else {433 Off (MOTOR_LEFT) ;}435 Release (left) ;}437 //Off (MOTOR_RIGHT) ;}439 }441 task motorLeftBa
k () {while (true) {443 while (right_run_ba
k) {A
quire (right) ;445 i f (LIGHT_LEFT > LIGHT_THRSHOLD)OnFwd (MOTOR_RIGHT ,−REVERSE) ;447 else {Off (MOTOR_RIGHT) ;449 }Release (right) ;451 }//Off (MOTOR_LEFT) ;453 }455 }457 task
ontrolDire
tion () {while (true) {459 i f ((LIGHT_LEFT < LIGHT_THRSHOLD && LIGHT_RIGHT < ←֓LIGHT_THRSHOLD)) {disableRun () ;461 disableRunBa
k () ;463 /∗ krims−krans der undersøger den ønskede r e t n i n g ∗/int
md = genNxtCmd () ;465 // i n t
md = runInEights (5) ;disp_
md =
md ;467 //PlayTone (110 ,1000) ;469 swit
h (
md) {
ase CASE_S :471 runStraight (POWER) ;//PlayTone (440 ,1000) ;473 enableRun (POWER) ;break ;475
ase CASE_L :runLeft (POWERTURN) ;477 //PlayTone (440 ,1000) ;enableRun (POWERTURN) ;479 break ;
ase CASE_R :481 runRight (POWERTURN) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 42

AI00 - Sokoban Solver A.1. NXC Code//PlayTone (110 ,1000) ;483 enableRun (POWERTURN) ;break ;485
ase CASE_TR :runRightRight (POWERROTATE) ;487 //PlayTone (110 ,1000) ;enableRun (POWERROTATE) ;489 break ;
ase CASE_TL :491 runLeftLeft (POWERROTATE) ;//PlayTone (110 ,1000) ;493 enableRun (POWERROTATE) ;break ;495
ase CASE_C :enableFrontSensor () ;497 runStraight (POWER) ;enableRun (POWER) ;499 break ;
ase CASE_B :501 runStraight (−REVERSE) ;enableRunBa
k () ;503 break ;
ase CASE_STOP :505 break ;default :507 break ;}509 }}511 }513 task displaySensors () {while (TRUE) {515 ClearS
reen () ;TextOut (0 , LCD_LINE1 , "L : ") ;517 NumOut (15 , LCD_LINE1 , LIGHT_LEFT) ;TextOut (30 , LCD_LINE1 , "R: ") ;519 NumOut (45 , LCD_LINE1 , LIGHT_RIGHT) ;521 TextOut (0 , LCD_LINE2 , "
md
ounter : ") ;NumOut (70 , LCD_LINE2 ,
md_
ounter) ;523 TextOut (0 , LCD_LINE3 , "
an_run? : ") ;525 NumOut (70 , LCD_LINE3 ,
an_run) ;527 TextOut (60 , LCD_LINE1 , "F : ") ;NumOut (75 , LCD_LINE1 , LIGHT_FRONT) ;529 TextOut (0 , LCD_LINE5 , "Left−run : ") ;531 NumOut (68 , LCD_LINE5 , left_run) ;533 TextOut (0 , LCD_LINE6 , "Rigtht−run : ") ;NumOut (68 , LCD_LINE6 , right_run) ;535 TextOut (0 , LCD_LINE7 , "Case i s now : ") ;537 NumOut (78 , LCD_LINE7 , disp_
md) ;539 Wait (500) ;}Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 43

AI00 - Sokoban Solver A.1. NXC Code541 }543 task main () {545 SetSensorLight (S1) ;SetSensorLight (S2) ;547 SetSensorLight (S3) ;//SetSensorTou
h (S4) ;549 // SetCustomSensorPer
entFul lS
a le (S1 ,50) ;551 Pre
edes (readSensors , motorRight , motorLeft ,
ontrolDire
tion , ←֓runningWithCan , motorRightBa
k , motorLeftBa
k) ; // d i s p l a ySen so r s553 }
� �

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 44

AI00 - Sokoban Solver A.2. Java
odeA.2 Java
odeA.2.1 SokobanSolver
lass
� �1 pa
kage ai00 . sokoban ;3 import java . util . ArrayList ;import java . util . Iterator ;5 import java . util . HashMap ;import java . util . PriorityQueue ;7 import ai00 . sokoban . Node ;9 import ai00 . sokoban . Position ;import ai00 . sokoban . parser . SokobanParser ;11 /∗∗13 ∗ $LastChangedRevision : 96 $
∗ $LastChangedDate : 2007−10−26 10 :50 :20 +0200 (fre , 26 ok t 2007) $15 ∗ $LastChangedBy : gronbaek $
∗17 ∗ SokobanSolver3 i s the primary
 l a s s in the Sokoban So l ve r program .
∗ I t uses a SokbanMapReader map as bas i s , and then s o l v e s the sokoban ←֓pu z z l e19 ∗ by u t i l i s i n g a t r e e s t r u
 t u r e and an A∗ (A s t a r) a l gor i t hm .
∗21 ∗ The requirements f o r the map i s s p e
 i f i e d in the SokobanMapReader ←֓
 l a s s .
∗23 ∗ Ea
h node in the p o s s i b l e s o l u t i o n i s pro
e s sed in three s t e p s .
∗ Fi r s t s t e p : a wh i l e loop runs through ea
h node in the open l i s t . A ←֓map i s popu la t ed25 ∗ using the informat ion from the node , and i t ' s
he
ked i f t he
urren t ←֓node i s
∗ t he s o l u t i o n . I f not , then
he
k f o r v a i l d p o s i t i o n s t h a t the ←֓diamonds
an be27 ∗ pushed from .
∗29 ∗ Se
ond s t e p : Che
k f o r v a l i d p o s i t i o n s
∗31 ∗ �author Bjorn Gronbaek
∗ �author Brian Horn33 ∗ �author Jon Kjaersgaard
∗35 ∗ �version 3.0
∗/37 publi

lass SokobanSolver {SokobanMapReader map ;39 boolean debug = fa l se ;boolean showstate = true ;41 /∗∗ The s e t o f nodes t h a t have been sear
hed through ∗/43 private HashMap<Integer , Obje
t>
losed = new HashMap<Integer , Obje
t ←֓>() ;private HashMap<Integer , HashMap<Integer , Obje
t>> outerClosed = new ←֓HashMap<Integer , HashMap<Integer , Obje
t>>() ;45 private PriorityQueue<Node> open = new PriorityQueue<Node>() ;47 /∗∗ The max sear
h depth ∗/Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 45

AI00 - Sokoban Solver A.2. Java
odeint maxSear
hDistan
e = 150 ;49 int maxDepth = 0 ;51 /∗∗
∗ Create a new SokobanSolver o b j e
 t f o r s o l v i n g . The map must uphold ←֓t he s p e
 i f i
 a t i o n s in the53 ∗ SokobanMapReader
 l a s s .
∗ I f t he debug parameter i s s e t t rue l o t s o f output w i l l be p r i n t e d ←֓to system . out . This might take55 ∗ very long time .
∗ I f t he shows ta t e s parameter i s s e t t rue a sma l l map wi th the ←֓p o s i t i o n o f the diamonds i s p r i n t e d57 ∗ f o r ea
h new node pro
e s sed .
∗59 ∗ �param mapf i l e t he map to be s o l v e d .
∗ �param debug show debug informat ion .61 ∗ �param shows ta t e s show map f o r ea
h node in the t r e e .
∗/63 publi
 SokobanSolver (String mapfile , boolean debug , boolean showstates) ←֓{map = new SokobanMapReader (mapfile) ;65 map .
reateMap () ;this . debug = debug ;67 this . showstate = showstates ;}69 /∗∗71 ∗ The main method used when s o l v i n g a map .
∗73 ∗ �return an a r r a y l i s t wi th p o s i t i o n s the robo t shou ld go through .
∗/75 publi
 ArrayList<ArrayList<Position>> solveMap () {System . out . println (" S t a r t i n g path s o l v i ng ") ;77 /∗
 l e a r the open and
 l o s e d l i s t ∗/79
losed .
lear () ;open .
lear () ;81 /∗ This i s our i n i t i a l node . I t has no parent , and i s added to the ←֓open l i s t ∗/83 Node node = new Node (map . diamonds , map . man) ;node . parent = null ;85 node . depth = 0 ;node .
ost = 0 ;87 node . heuristi
 = 0 ;open . add (node) ;89 int numberOfNodes = 0 ;91 /∗ While the re i s open nodes ,
ont inue sear
h ∗/while ((maxDepth < maxSear
hDistan
e) && (open . size () != 0)) {93 numberOfNodes++;95 /∗ Get the next node in the open l i s t , and remove i t from the l i s t ←֓

∗/Node
urrentNode = open . poll () ;97 /∗ Create a new map , wi th the s t a t e in format ion from the node ∗/99 map . insertPositions (
urrentNode . diamonds ,
urrentNode . man) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 46

AI00 - Sokoban Solver A.2. Java
ode101 /∗ Debug informat ion be ing p r i n t e d below here ∗/i f (showstate) {103 System . out . println (map . man) ;System . out . println (map) ;105 }107 i f (debug) System . out . print ("Open nodes : "+open . size ()+"\ t Closed ←֓nodes : "+
losed . size ()+"\ t ") ;i f (debug) System . out . println ("Depth : "+
urrentNode . depth) ;109 i f (debug) System . out . println (map . goals+" "+
urrentNode . diamonds) ;111 i f (! debug) {i f (numberOfNodes % 1000 == 0) System . out . println ("Open nodes : "+ ←֓open . size ()+"\ t Closed nodes : "+
losed . size ()+"\ t depth : "+ ←֓maxDepth) ;113 }/∗ End o f debug ∗/115 /∗
he
k i f we have found the s o l u t i o n ∗/117 i f (map . goals . toString () . equals (
urrentNode . diamonds . toString ())) {System . out . println ("Found a s o l u t i o n ! ! ! ") ;119 System . out . println ("Depth : "+
urrentNode . depth) ;System . out . print ("Open nodes : "+open . size ()+"\ t Closed nodes : "+ ←֓
losed . size ()+"\ t ") ;121 return pro
essSolution (
urrentNode) ;123 }125 /∗ I f we haven ' t found the s o l u t i on , pro
eed to
he
k the new ←֓v a l i d p o s i t i o n s f o r the new node ∗/
he
kValidPositions (
urrentNode) ;127 /∗ Clear the map a f t e r pro
e s s ing a node , and s t a r t again , wi th a ←֓new node ∗/129 map . removePositions () ;}131 /∗ I f we g e t to here , something i s wrong ∗/133 System . out . println ("Done . . . i f we haven ' t found a path , the r e ' s no ←֓s o l u t i o n ! ") ;return null ;135 }137 private ArrayList<ArrayList<Position>> pro
essSolution (Node ←֓
urrentNode) {System . out . println ("SOLUTION HERE: ") ;139 ArrayList<SokobanSortedList> diamondList = new ArrayList< ←֓SokobanSortedList >() ;141 ArrayList<ArrayList<Position>> pathList = new ArrayList<ArrayList< ←֓Position>>() ;143145 diamondList . add (
urrentNode . diamonds) ;pathList . add (
urrentNode . path) ;147 while (
urrentNode . parent != null) {
urrentNode =
urrentNode . parent ;149 diamondList . add (
urrentNode . diamonds) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 47

AI00 - Sokoban Solver A.2. Java
ode151 i f (
urrentNode . path != null) {pathList . add (
urrentNode . path) ;153 }//System . out . p r i n t l n (
urrentNode . path) ;155 }157 /∗f o r (SokobanSortedLis t l i s t : diamondList) {159 map . i n s e r tP o s i t i o n s (l i s t , new Pos i t i on (0 ,0)) ;System . out . p r i n t l n (map) ;161 System . out . p r i n t l n ←֓("−− ");map . removePosi t ions () ;163 }
∗/165 return pathList ;167 }169 private void
he
kValidPositions (Node
urrentNode) {171 /∗ For ea
h diamond in the map ,
he
k f o r new v a l i d p o s i t i o n s ∗/SokobanSortedList allValidPositions = new SokobanSortedList () ;173 PriorityQueue<Node> allNewNodes = new PriorityQueue<Node>() ;175 for (Position diamond :
urrentNode . diamonds) {i f (debug) System . out . println ("Looking at diamond "+diamond . x+" , "+ ←֓diamond . y) ;177 /∗ Get v a l i d p o s i t i o n s f o r the diamond ∗/179 SokobanSortedList validPositions = getValidPositionsForDiamond (←֓diamond) ;181 /∗ Create open nodes f o r the v a l i d po s i t i on s , f o r t h i s diamond ∗/PriorityQueue<Node> openNodes =
reateOpenNodes (validPositions , ←֓diamond ,
urrentNode) ;183 allValidPositions . addAll (validPositions) ;185 allNewNodes . addAll (openNodes) ;}187 i f (debug) {189 System . out . println ("Al l diamonds t r ea ted : "+allValidPositions . size ←֓()+" va l i d p o s i t i o n s : "+allValidPositions) ;System . out . println ("Al l diamonds t r ea ted : "+allNewNodes . size ()+" ←֓new nodes . ") ;191 }193
he
kForClosedNodes (
urrentNode , allValidPositions , allNewNodes) ;}195 private void
he
kForClosedNodes (Node
urrentNode , SokobanSortedList ←֓allValidPositions , PriorityQueue<Node> allNewNodes) {197 HashMap<Integer , Obje
t> innerClosed ;i f (outerClosed .
ontainsKey (new Integer (
urrentNode . diamonds . hashCode ←֓()))) {199 i f (debug) {Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 48

AI00 - Sokoban Solver A.2. Java
odeSystem . out . println ("Diamonds ARE in
 l o s ed l i s t ") ;201 }innerClosed = outerClosed . get (new Integer (
urrentNode . diamonds . ←֓hashCode ())) ;203 i f (innerClosed .
ontainsKey (new Integer (allValidPositions . hashCode ←֓()))) {i f (debug) {205 System . out . println ("New po s i t i o n s ARE in
 l o s ed l i s t ") ;}207 }else {209 innerClosed . put (new Integer (allValidPositions . hashCode ()) , null) ;open . addAll (allNewNodes) ;211 i f (debug) {System . out . println ("New po s i t i o n s ARE NOT in
 l o s ed l i s t ") ;213 System . out . println ("New s i z e o f open l i s t are : "+open . size ()) ;}215 }}217 else{outerClosed . put ((new Integer (
urrentNode . diamonds . hashCode ())) , ←֓new HashMap<Integer , Obje
t>()) ;219 open . addAll (allNewNodes) ;i f (debug) {221 System . out . println ("Diamonds ARE NOT in
 l o s ed l i s t ") ;System . out . println ("New s i z e o f open l i s t are : "+open . size ()) ;223 }}225 }227 private PriorityQueue<Node>
reateOpenNodes (SokobanSortedList ←֓validPositions , Position diamond , Node oldNode) {PriorityQueue<Node> newNodes = new PriorityQueue<Node>() ;229 for (Position position : validPositions) {231 /∗ The new po s i t i o n o f the man . . . t he o ld p o s i t i o n o f the diamond ←֓

∗/Position newman = new Position (diamond . x , diamond . y) ;233 /∗ Movement o f t he diamond ∗/235 int deltaX = diamond . x − position . x ;int deltaY = diamond . y − position . y ;237 /∗ New l i s t o f diamods ,
 rea t ed from the o ld l i s t ∗/239 SokobanSortedList newdiamonds = new SokobanSortedList () ;241 for (Position oldDiamond : oldNode . diamonds) {/∗243 i f (oldDiamond . x != newman . x && oldDiamond . y != newman . y) {newdiamonds . add (oldDiamond) ;245 }
∗/247 i f (! oldDiamond . equals (newman)) {newdiamonds . add (oldDiamond) ;249 }}251 /∗ Remove the diamond at the p o s i t i o n o f the man ∗/253 //newdiamonds . remove (newman) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 49

AI00 - Sokoban Solver A.2. Java
ode255 /∗ And add the moved diamond ' s new po s i t i o n ∗/Position diamondPos = new Position (diamond . x + deltaX , diamond . y + ←֓deltaY) ;257 newdiamonds . add (diamondPos) ;259 Node newnode = new Node (newdiamonds , newman) ;261 newnode . setParent (oldNode) ;newnode .
ost =
al
ulateCost ()+oldNode .
ost ;263 newnode . heuristi
 =
al
ulateHeuristi
 (diamondPos) ;newnode . path = map . findPath (position) ;265 newnode . path . add (0 , newman) ;267 i f (debug) System . out . println ("Adding new open node : ("+diamondPos . ←֓x+" , "+diamondPos . y+")
o s t : "+newnode .
ost+" h e u r i s t i
 : "+ ←֓newnode . heuristi
) ;269 i f (newnode . depth > maxDepth) maxDepth = newnode . depth ;271 newNodes . add (newnode) ;}273 return newNodes ;}275 private SokobanSortedList getValidPositionsForDiamond (Position pos) {277 SokobanSortedList validPositions = new SokobanSortedList () ;279 for (int x=−1;x<2;x++) {for (int y=−1;y<2;y++) {281 //
he
k i f t i l e i s t he same as
urren t t i l e283 i f ((x == 0) && (y == 0)) {
ontinue ; //jump to next f o r285 }287 //
he
k i f t i l e i s d iagona l p l a
edi f ((x != 0) && (y != 0)) {289
ontinue ; //jump to next f o r}291 /∗ Che
k i f t he p o s i t i o n i s not a wal l , i f t he oppo s i t e p o s i t i o n ←֓i s not a wa l l and f i n a l l y293 ∗ i f t he man
an rea
h the p o s i t i o n
∗/295 //System . out . p r i n t l n ((pos . x+x)+","+(pos . y+y)+": "+map . t e r r a i n [←֓pos . x+x ℄ [pos . y+y ℄) ;i f (map . terrain [pos . x+x ℄ [pos . y+y ℄ == SokobanMapStati
s . GROUND && ←֓// the t a r g e t p o s i t i o n297 map . terrain [pos . x−x ℄ [pos . y−y ℄ == SokobanMapStati
s . GROUND) { ←֓// the p o s i t i o n the man must rea
hi f (debug) System . out . println (" Pos i t i on : "+(pos . x+x)+" , "+(pos . y ←֓+y)+" i s not a wa l l ") ;299 ArrayList<Position> path = map . findPath (new Position (pos . x+x , ←֓pos . y+y)) ;i f (path != null) { // i s the re a path f o r the man301 i f (debug) System . out . println (" Pos i t i on : "+(pos . x+x)+" , "+(pos ←֓. y+y)+" i s r e a
hab l e l ") ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 50

AI00 - Sokoban Solver A.2. Java
odevalidPositions . add (pushDiamond (pos , new Position (pos . x+x , pos ←֓. y+y))) ; // the new v a l i d p o s i t i o n303 //System . out . p r i n t l n (path) ;i f (debug) System . out . println ("Adding p o s i t i o n : "+(pos . x+x)+" ←֓, "+(pos . y+y)) ;305 }}307 }}309 return validPositions ;311 }313 Position pushDiamond (Position diamond , Position pushFrom) {return new Position (diamond . x−(diamond . x−pushFrom . x) , diamond . y−(←֓diamond . y−pushFrom . y)) ;315 }317 private f loat
al
ulateCost () {/∗ Sin
e the f i e l d s are always i d e n t i
 a l , j u s t r e turn the same va lue ←֓always ∗/319 return 10 ;}321 private f loat
al
ulateHeuristi
 (Position diamondPos) {323 int
losestrange = Integer . MAX_VALUE ;325 Position
urrent ;Iterator<Position> it = map . goals . iterator () ;327 while (it . hasNext ()) {
urrent = it . next () ;329 int distan
e = getDistan
e (diamondPos ,
urrent) ;i f (distan
e <
losestrange) {331
losestrange = distan
e ;}333 }335 int manrange = getDistan
e (diamondPos , map . man) ;337 return (
losestrange + manrange) ∗ 10 ;}339341 private int getDistan
e (Position diamondPos , Position
urrent) {343 int deltaX = diamondPos . x −
urrent . x ;int deltaY = diamondPos . y −
urrent . y ;345 return (int) Math . sqrt (Math . pow (deltaX , 2)+Math . pow (deltaY , 2)) ;}347 /∗∗349 ∗ �param args
∗/351 publi
 stati
 void main (String [℄ args) {boolean debug = Boolean . valueOf (args [1 ℄) ;353 boolean showstate = Boolean . valueOf (args [2 ℄) ;SokobanSolver solver = new SokobanSolver (args [0 ℄ , debug , showstate) ;355 ArrayList<ArrayList<Position>> solution = solver . solveMap () ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 51

AI00 - Sokoban Solver A.2. Java
ode357 i f (solution != null) {for (ArrayList<Position> list : solution) {359 System . out . println (list) ;}361 System . out . println (new SokobanParser (solution) . parse2simlator ()) ;String robotResult = new SokobanParser (solution) . parse2robot () ;363 System . out . println (robotResult) ;System . out . println (SokobanParser .
leanCanRuns (robotResult)) ;365 }}367 }
� �A.2.2 SokobanMapReader
lass
� �1 pa
kage ai00 . sokoban ;3 import java . io . BufferedReader ;import java . io . FileNotFoundEx
eption ;5 import java . io . FileReader ;import java . io . IOEx
eption ;7 import java . util . ArrayList ;import java . util . List ;9 import java . util . PriorityQueue ;import java . util . S
anner ;11 /∗∗13 ∗ $LastChangedRevision : 96 $
∗ $LastChangedDate : 2007−10−26 10 :50 :20 +0200 (fre , 26 ok t 2007) $15 ∗ $LastChangedBy : gronbaek $
∗17 ∗ �author Bjorn Gronbaek
∗ �author Brian Horn19 ∗ �author Jon Kjaersgaard
∗21 ∗/publi

lass SokobanMapReader {23 private BufferedReader inputStream ;private String filename ;25 private S
anner
onfigS
anner = null ;27 publi
 int [℄ [℄ terrain ;int width ;29 int height ;publi
 SokobanSortedList diamonds = new SokobanSortedList () ;31 publi
 SokobanSortedList goals = new SokobanSortedList () ;publi
 Position man ;33 publi
 SokobanMapReader (String filename) {35 this . filename = filename ;}37 private void readMap (String filename) {39 try {inputStream = new BufferedReader (new FileReader (filename)) ;41 }
at
h (FileNotFoundEx
eption e) {// TODO Auto−generated
at
h b l o
 k43 e . printSta
kTra
e () ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 52

AI00 - Sokoban Solver A.2. Java
ode}45 }47 publi
 void insertPositions (SokobanSortedList diamonds , Position man) {for (Position pos : diamonds) {49 terrain [pos . x ℄ [pos . y ℄ = SokobanMapStati
s . DIAMOND ;}51 this . man = man ;}53 publi
 void removePositions () {55 for (int y =0; y<terrain [0 ℄ . length ; y++){for (int x=0;x<terrain . length ; x++){57 i f (terrain [x ℄ [y℄==SokobanMapStati
s . DIAMOND) {terrain [x ℄ [y ℄ = SokobanMapStati
s . GROUND ;59 }}61 }this . man = null ;63 }65 publi
 void
reateMap () {readMap (filename) ;67 System . out . println ("Creat ing MAP") ;try {69
onfigS
anner = new S
anner (inputStream . readLine ()) ;width =
onfigS
anner . nextInt () ;71 height =
onfigS
anner . nextInt () ;73 terrain = new int [width ℄ [height ℄ ;75 System . out . println ("New map i s : "+width+"x"+height) ;77 StringBuffer sb ;for (int y=0;y<height ; y++){79 sb = new StringBuffer (inputStream . readLine ()) ;
har tmp ;81 for (int x=0; x<width ; x++){i f (x < sb . length ()) tmp = sb .
harAt (x) ;83 else tmp = 'E ' ;swit
h (tmp) {85
ase 'X ' :terrain [x ℄ [y ℄ = SokobanMapStati
s . WALL ;87 break ;
ase ' J ' :89 diamonds . add (new Position (x , y)) ;break ;91
ase 'G ' :goals . add (new Position (x , y)) ;93 break ;
ase 'M' :95 man = new Position (x , y) ;break ;97 default ://map . se tTerra in (j , i , SokobanMap .GROUND) ;99 break ;}101 }}Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 53

AI00 - Sokoban Solver A.2. Java
ode103 System . out . println ("x − width = "+terrain . length) ;105 System . out . println ("y − he ight = "+terrain [0 ℄ . length) ;107 }
at
h (IOEx
eption e) {System . out . println (" F i l e Problem ! ! ! ! ") ;109 e . printSta
kTra
e () ;}111 }113 publi
 String toString () {String temp = "" ;115 for (int y = 0 ; y < terrain [0 ℄ . length ; y++) {for (int x = 0 ; x < terrain . length ; x++) {117 i f (terrain [x ℄ [y℄==SokobanMapStati
s . GROUND) {temp+=" . " ;119 }i f (terrain [x ℄ [y℄==SokobanMapStati
s . DIAMOND) {121 temp+="D" ;}123 i f (terrain [x ℄ [y℄==SokobanMapStati
s . GOAL) {temp+="G" ;125 }i f (terrain [x ℄ [y℄==SokobanMapStati
s . WALL) {127 temp+="W" ;}129 i f (terrain [x ℄ [y℄==SokobanMapStati
s . MAN) {temp+="M" ;131 }}133 temp+="\n" ;}135 return temp ;}137 publi
 void printFile () {139 readMap (filename) ;String line ;141 try {line = inputStream . readLine () ;143 while (line != null) {System . out . println (line) ;145 line = inputStream . readLine () ;}147 }
at
h (IOEx
eption e) {System . out . println ("Read e r r o r on f i l e ") ;149 e . printSta
kTra
e () ;}151 }153 /∗pu b l i
 Set<PathPosi t ion> findPath (Pos i t i on p o s i t i o n) {155 Set<PathPosi t ion> r e s u l t = new TreeSet<PathPosi t ion >() ;PathPosi t ion orgPos = new PathPosi t ion (man. x , man. y) ;157 orgPos . s e tOr i g i nPo s i t i on (orgPos) ;r e s u l t . add (orgPos) ;159 i n t pathLength = 100;t e r r a i n [man. x ℄ [man . y ℄ = 100;161 pathLength++;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 54

AI00 - Sokoban Solver A.2. Java
odeI t e r a t o r <PathPosi t ion> i t = r e s u l t . i t e r a t o r () ;163 whi l e (i t . hasNext ()) {PathPosi t ion pos = i t . next () ;165 pathLength = t e r r a i n [pos . x ℄ [pos . y ℄ ;i f (pos . x == po s i t i o n . x && pos . y == po s i t i o n . y) {167 f o r (i n t i = 0 ; i < t e r r a i n . l e n g t h ; i++) {f o r (i n t j = 0 ; j < t e r r a i n [0 ℄ . l e n g t h ; j++) {169 i f (t e r r a i n [i ℄ [j ℄ > 99) {t e r r a i n [i ℄ [j ℄= SokobanMap2 .GROUND;171 }}173 }}175 i f (t e r r a i n [pos . x−1℄[pos . y ℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion (pos . x−1,pos . y) ;177 newPo . s e tOr i g i nPo s i t i on (orgPos) ;t e r r a i n [pos . x−1℄[pos . y℄=pathLength +1;179 r e s u l t . add (newPo) ;}181 i f (t e r r a i n [pos . x+1℄[pos . y ℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion (pos . x+1,pos . y) ;183 newPo . s e tOr i g i nPo s i t i on (orgPos) ;t e r r a i n [pos . x+1℄[pos . y℄=pathLength +1;185 r e s u l t . add (newPo) ;}187 i f (t e r r a i n [pos . x ℄ [pos . y−1℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion (pos . x , pos . y−1) ;189 newPo . s e tOr i g i nPo s i t i on (orgPos) ;t e r r a i n [pos . x ℄ [pos . y−1℄=pathLength +1;191 r e s u l t . add (newPo) ;}193 i f (t e r r a i n [pos . x ℄ [pos . y+1℄ == SokobanMap2 .GROUND){PathPosi t ion newPo = new PathPosi t ion (pos . x , pos . y+1) ;195 newPo . s e tOr i g i nPo s i t i on (orgPos) ;t e r r a i n [pos . x ℄ [pos . y+1℄= pathLength +1;197 r e s u l t . add (newPo) ;}199 }201 f o r (i n t i = 0 ; i < t e r r a i n . l e n g t h ; i++) {f o r (i n t j = 0 ; j < t e r r a i n [0 ℄ . l e n g t h ; j++) {203 System . out . p r i n t l n (t e r r a i n [i ℄ [j ℄) ;i f (t e r r a i n [i ℄ [j ℄ > 99) {205 t e r r a i n [i ℄ [j ℄ = SokobanMap2 .GROUND;r e s u l t . add (new PathPosi t ion (i , j)) ;207 }}209 }re turn r e s u l t ;211 }
∗/213215 publi
 ArrayList<Position> findPath (Position targetPosition) {217 //System . out . p r i n t l n (" Finding path to : " + t a r g e tP o s i t i o n+" from man ←֓: "+man) ;PathPosition startPosition = new PathPosition (man . x , man . y) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 55

AI00 - Sokoban Solver A.2. Java
ode219 startPosition . setOriginPosition (null) ; // t h i s i s t he s t a r t , t he re ←֓i s no parentint pathLength = 100 ;221 terrain [man . x ℄ [man . y ℄= 100 ;pathLength++;223 PriorityQueue<PathPosition> openPositions = new PriorityQueue< ←֓PathPosition>() ;ArrayList<Position> path = new ArrayList<Position >() ;225 openPositions . add (startPosition) ;227 while (openPositions . size ()> 0) {PathPosition
urrentPosition = openPositions . poll () ;229 pathLength = terrain [
urrentPosition . x ℄ [
urrentPosition . y ℄ ;231 i f (
urrentPosition . x==targetPosition . x &&
urrentPosition . y== ←֓targetPosition . y) {for (int i = 0 ; i < terrain . length ; i++) {233 for (int j = 0 ; j < terrain [0 ℄ . length ; j++) {i f (terrain [i ℄ [j ℄ > 99) {235 terrain [i ℄ [j ℄= SokobanMapStati
s . GROUND ;}237 }}239 path . add ((Position)
urrentPosition) ;241 while (
urrentPosition . orgPosition != null) {
urrentPosition =
urrentPosition . orgPosition ;243 path . add ((Position)
urrentPosition) ;}245 //System . out . p r i n t l n (path) ;247 return path ;}249251 i f (terrain [
urrentPosition . x−1 ℄ [
urrentPosition . y ℄ == ←֓SokobanMapStati
s . GROUND) {PathPosition newPo = new PathPosition (
urrentPosition . x−1, ←֓
urrentPosition . y) ;253 newPo . setOriginPosition (
urrentPosition) ;terrain [
urrentPosition . x−1 ℄ [
urrentPosition . y ℄=pathLength+1;255 openPositions . add (newPo) ;}257 i f (terrain [
urrentPosition . x+1℄ [
urrentPosition . y ℄ == ←֓SokobanMapStati
s . GROUND) {PathPosition newPo = new PathPosition (
urrentPosition . x+1, ←֓
urrentPosition . y) ;259 newPo . setOriginPosition (
urrentPosition) ;terrain [
urrentPosition . x+1℄ [
urrentPosition . y ℄=pathLength+1;261 openPositions . add (newPo) ;}263 i f (terrain [
urrentPosition . x ℄ [
urrentPosition . y−1℄ == ←֓SokobanMapStati
s . GROUND) {PathPosition newPo = new PathPosition (
urrentPosition . x , ←֓
urrentPosition . y−1) ;265 newPo . setOriginPosition (
urrentPosition) ;terrain [
urrentPosition . x ℄ [
urrentPosition . y−1℄=pathLength+1;267 openPositions . add (newPo) ;}Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 56

AI00 - Sokoban Solver A.2. Java
ode269 i f (terrain [
urrentPosition . x ℄ [
urrentPosition . y+1℄ == ←֓SokobanMapStati
s . GROUND) {PathPosition newPo = new PathPosition (
urrentPosition . x , ←֓
urrentPosition . y+1) ;271 newPo . setOriginPosition (
urrentPosition) ;terrain [
urrentPosition . x ℄ [
urrentPosition . y+1℄= pathLength+1;273 openPositions . add (newPo) ;}275 }277 for (int i = 0 ; i < terrain . length ; i++) {for (int j = 0 ; j < terrain [0 ℄ . length ; j++) {279 i f (terrain [i ℄ [j ℄ > 99) {terrain [i ℄ [j ℄ = SokobanMapStati
s . GROUND ;281 }}283 }return null ;285 }287289 publi
 boolean isRea
hable (Position position) {291 PathPosition orgPos = new PathPosition (man . x , man . y) ;orgPos . setOriginPosition (orgPos) ;293 int pathLength = 100 ;terrain [man . x ℄ [man . y ℄= 100 ;295 pathLength++;PriorityQueue<PathPosition> openPositions = new PriorityQueue< ←֓PathPosition>() ;297 openPositions . add (orgPos) ;299 while (openPositions . size () >0){PathPosition pos = openPositions . poll () ;301 pathLength = terrain [pos . x ℄ [pos . y ℄ ;i f (pos . x==position . x && pos . y==position . y) {303 for (int i = 0 ; i < terrain . length ; i++) {for (int j = 0 ; j < terrain [0 ℄ . length ; j++) {305 i f (terrain [i ℄ [j ℄ > 99) {terrain [i ℄ [j ℄= SokobanMapStati
s . GROUND ;307 }}309 }return true ;311 }i f (terrain [pos . x−1 ℄ [pos . y ℄ == SokobanMapStati
s . GROUND) {313 PathPosition newPo = new PathPosition (pos . x−1,pos . y) ;newPo . setOriginPosition (orgPos) ;315 terrain [pos . x−1 ℄ [pos . y ℄=pathLength+1;openPositions . add (newPo) ;317 }i f (terrain [pos . x+1℄ [pos . y ℄ == SokobanMapStati
s . GROUND) {319 PathPosition newPo = new PathPosition (pos . x+1,pos . y) ;newPo . setOriginPosition (orgPos) ;321 terrain [pos . x+1℄ [pos . y ℄=pathLength+1;openPositions . add (newPo) ;323 }i f (terrain [pos . x ℄ [pos . y−1℄ == SokobanMapStati
s . GROUND) {Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 57

AI00 - Sokoban Solver A.2. Java
ode325 PathPosition newPo = new PathPosition (pos . x , pos . y−1) ;newPo . setOriginPosition (orgPos) ;327 terrain [pos . x ℄ [pos . y−1℄=pathLength+1;openPositions . add (newPo) ;329 }i f (terrain [pos . x ℄ [pos . y+1℄ == SokobanMapStati
s . GROUND) {331 PathPosition newPo = new PathPosition (pos . x , pos . y+1) ;newPo . setOriginPosition (orgPos) ;333 terrain [pos . x ℄ [pos . y+1℄= pathLength+1;openPositions . add (newPo) ;335 }}337 for (int i = 0 ; i < terrain . length ; i++) {339 for (int j = 0 ; j < terrain [0 ℄ . length ; j++) {i f (terrain [i ℄ [j ℄ > 99) {341 terrain [i ℄ [j ℄ = SokobanMapStati
s . GROUND ;}343 }}345 return fa l se ;}347349 publi
 void showPath (List<Position> positions) {for (Position position : positions) {351 System . out . println (position) ;}353 }355 publi
 void testIsRea
hable (Position p) {System . out . println (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ") ;357 System . out . println (" I n i t i a l p o s i t i o n o f robot i s : " + new Position (←֓man . x , man . y)) ;System . out . println ("The robot t r i e s to move to p o s i t i o n : " + p) ;359 System . out . println (" I s t h i s p o s s i b l e ? " + this . isRea
hable (p)) ;}361 publi
 void testFindPath (Position p) {363 System . out . println (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ") ;System . out . println (" I n i t i a l p o s i t i o n o f robot i s : " + new Position (←֓man . x , man . y)) ;365 System . out . println ("The robot t r i e s to move to p o s i t i o n : " + p) ;System . out . println ("The path f o r t h i s i s : ") ;367 System . out . println (this . findPath (p)) ;System . out . println (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ") ;369 }371 publi
 void testPriorityQueue () {PriorityQueue<Position> t1 = new PriorityQueue<Position >() ;373 PriorityQueue<Position> t2 = new PriorityQueue<Position >() ;PriorityQueue<Position> t3 = new PriorityQueue<Position >() ;375 PriorityQueue<Position> pqueue = new PriorityQueue<Position >() ;t1 . add (new Position (1 , 1)) ;377 t1 . add (new Position (2 , 2)) ;t1 . add (new Position (3 , 3)) ;379 t2 . add (new Position (4 , 4)) ;t2 . add (new Position (5 , 5)) ;381 t2 . add (new Position (6 , 6)) ;Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 58

AI00 - Sokoban Solver A.2. Java
odepqueue . addAll (t1) ;383 pqueue . addAll (t2) ;pqueue . addAll (t3) ;385 System . out . println (pqueue) ;}387389 publi
 stati
 void main (String [℄ args) {391 SokobanMapReader mr = new SokobanMapReader ("maps/ testmap1 . txt ") ;mr .
reateMap () ;393 mr . printFile () ;// boo lean do t e s t = f a l s e ;395 boolean dotest = true ;i f (dotest) {397 // mr . t e s t I sRea
hab l e (new Pos i t i on (8 ,1)) ;mr . testFindPath (new Position (1 , 1)) ;399 // mr . t e s tPr io r i t yQueue () ;}401 }}
� �

Brian Horn, Bjørn Grønbæk & Jon Kjærsgaard 59

